The smith chart is a nomogram used frequently in RF/Microwave Engineering. Since its inception it has been recognised that projecting the chart onto the reimen sphere [1].
[1]H. . Wheeler, “Reflection Charts Relating to Impedance Matching,” IEEE Transactions on Microwave Theory and Techniques, vol. 32, no. 9, pp. 1008–1021, Sep. 1984.
In [36]:
#from IPython.display import SVG
#SVG('pics/smith_sphere.svg')
from printer import Format
In [45]:
from ga import Ga
from sympy import *
Format()
(ga,er,ex,es) = Ga.build('e_r e_x e_s',g=[1,1,1])
(gaz,zr,zx) = Ga.build('z_r z_x',g=[1,1])
Bz = er^ex # impedance plance
Bs = es^ex # reflection coefficient plane
Bx = er^es
I = ga.I()
def down(p, N):
'''
stereographically project a vector in G3 downto the bivector N
'''
n= -1*N.dual()
return -(n^p)*(n-n*(n|p)).inv()
def up(p):
'''
stereographically project a vector in G2 upto the space G3
'''
if (p^Bz).obj == 0:
N = Bz
elif (p^Bs).obj == 0:
N = Bs
n = -N.dual()
return n + 2*(p*p + 1).inv()*(p-n)
a,b,c,z,s,n = [ga.mv(k,'vector') for k in ['a','b','c','z','s' ,'n']]
Starting with an impedance vector $z$, defined by a vector in the impedance plane $B_z$, this vector has two scalar components ( $z^r$, $z^x$) known as resistance and reactance
In [38]:
Bz.dual()
Bz.is_zero()
Out[38]:
In [39]:
z = z.proj([er,ex])
z
Out[39]:
stereographically up-projecting this onto the sphere to point $p$,
In [40]:
p = up(z)
p
Out[40]:
In [41]:
p.norm2()
Out[41]:
If we stereo-project this back onto the impedance plane
In [42]:
down(p, Bz)
Out[42]:
In [43]:
down(p,Bs).simplify()
Out[43]:
In [44]:
(z-er)*(z+er).inv()
In [ ]:
p
In [ ]:
R=((-pi/4)*Bx).exp()
R
In [ ]:
R*p*R.rev()
In [ ]:
down(R*p*R.rev(),Bz)
In [ ]:
#Fmt([R,R])
In [ ]:
#Fmt((R,p))
In [ ]: