1 |
$\beta = \frac{2\pi}{\lambda}$, $\lambda = \frac{u}{f}$ |
same |
2 |
$\Gamma_L = \frac{Z_L - Z_0}{Z_L + Z_0}$ |
calculate $z_L = \frac{Z_L}{Z_0}$ & plot Smith chart |
3 |
$\Gamma_{in} = \Gamma_L e^{-j2\beta l}$ |
rotate cw by an angle of $2 \beta l$ around a circle of radius $ |
z_L |
$ |
4 |
$Z_{in} = Z_0 \frac{1 + \Gamma_{in}}{1 - \Gamma_{in}}$ |
read $z_{in}$ from Smith chart and calculate $Z_{in} = z_{in} Z_0$ |
5 |
$\tilde{V_{in}} = \tilde{V_g} \frac{Z_{in}}{Z_{in}+Z_g}$ |
same |
6 |
$V^+_0 = \tilde{V_{in}} \frac{e^{-j\beta l}}{1 + \Gamma_{in}} $ |
same |