Deep Learning

Assignment 4

Previously in 2_fullyconnected.ipynb and 3_regularization.ipynb, we trained fully connected networks to classify notMNIST characters.

The goal of this assignment is make the neural network convolutional.


In [1]:
# These are all the modules we'll be using later. Make sure you can import them
# before proceeding further.
from __future__ import print_function
import numpy as np
import tensorflow as tf
from six.moves import cPickle as pickle
from six.moves import range

In [2]:
pickle_file = 'notMNIST.pickle'

with open(pickle_file, 'rb') as f:
  save = pickle.load(f)
  train_dataset = save['train_dataset']
  train_labels = save['train_labels']
  valid_dataset = save['valid_dataset']
  valid_labels = save['valid_labels']
  test_dataset = save['test_dataset']
  test_labels = save['test_labels']
  del save  # hint to help gc free up memory
  print('Training set', train_dataset.shape, train_labels.shape)
  print('Validation set', valid_dataset.shape, valid_labels.shape)
  print('Test set', test_dataset.shape, test_labels.shape)


Training set (200000, 28, 28) (200000,)
Validation set (10000, 28, 28) (10000,)
Test set (10000, 28, 28) (10000,)

Reformat into a TensorFlow-friendly shape:

  • convolutions need the image data formatted as a cube (width by height by #channels)
  • labels as float 1-hot encodings.

In [3]:
image_size = 28
num_labels = 10
num_channels = 1 # grayscale

import numpy as np

def reformat(dataset, labels):
  dataset = dataset.reshape(
    (-1, image_size, image_size, num_channels)).astype(np.float32)
  labels = (np.arange(num_labels) == labels[:,None]).astype(np.float32)
  return dataset, labels
train_dataset, train_labels = reformat(train_dataset, train_labels)
valid_dataset, valid_labels = reformat(valid_dataset, valid_labels)
test_dataset, test_labels = reformat(test_dataset, test_labels)
print('Training set', train_dataset.shape, train_labels.shape)
print('Validation set', valid_dataset.shape, valid_labels.shape)
print('Test set', test_dataset.shape, test_labels.shape)


Training set (200000, 28, 28, 1) (200000, 10)
Validation set (10000, 28, 28, 1) (10000, 10)
Test set (10000, 28, 28, 1) (10000, 10)

In [4]:
def accuracy(predictions, labels):
  return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))
          / predictions.shape[0])

Let's build a small network with two convolutional layers, followed by one fully connected layer. Convolutional networks are more expensive computationally, so we'll limit its depth and number of fully connected nodes.


In [5]:
batch_size = 16
patch_size = 5
depth = 16
num_hidden = 64

graph = tf.Graph()

with graph.as_default():

  # Input data.
  tf_train_dataset = tf.placeholder(
    tf.float32, shape=(batch_size, image_size, image_size, num_channels))
  tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
  tf_valid_dataset = tf.constant(valid_dataset)
  tf_test_dataset = tf.constant(test_dataset)
  
  # Variables.
  layer1_weights = tf.Variable(tf.truncated_normal(
      [patch_size, patch_size, num_channels, depth], stddev=0.1))
  layer1_biases = tf.Variable(tf.zeros([depth]))
  layer2_weights = tf.Variable(tf.truncated_normal(
      [patch_size, patch_size, depth, depth], stddev=0.1))
  layer2_biases = tf.Variable(tf.constant(1.0, shape=[depth]))
  layer3_weights = tf.Variable(tf.truncated_normal(
      [image_size // 4 * image_size // 4 * depth, num_hidden], stddev=0.1))
  layer3_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden]))
  layer4_weights = tf.Variable(tf.truncated_normal(
      [num_hidden, num_labels], stddev=0.1))
  layer4_biases = tf.Variable(tf.constant(1.0, shape=[num_labels]))
  
  # Model.
  def model(data):
    conv = tf.nn.conv2d(data, layer1_weights, [1, 1, 1, 1], padding='SAME')
    hidden = tf.nn.relu(conv + layer1_biases)
    hidden = tf.nn.max_pool(hidden, [1,2,2,1], [1,2,2,1], padding='SAME')
    conv = tf.nn.conv2d(hidden, layer2_weights, [1, 1, 1, 1], padding='SAME')
    hidden = tf.nn.relu(conv + layer2_biases)
    hidden = tf.nn.max_pool(hidden, [1,2,2,1], [1,2,2,1], padding='SAME')
    shape = hidden.get_shape().as_list()
    reshape = tf.reshape(hidden, [shape[0], shape[1] * shape[2] * shape[3]])
    hidden = tf.nn.relu(tf.matmul(reshape, layer3_weights) + layer3_biases)
    return tf.matmul(hidden, layer4_weights) + layer4_biases
  
  # Training computation.
  logits = model(tf_train_dataset)
  loss = tf.reduce_mean(
    tf.nn.softmax_cross_entropy_with_logits(logits, tf_train_labels))
    
  # Optimizer.
  optimizer = tf.train.GradientDescentOptimizer(0.05).minimize(loss)
  
  # Predictions for the training, validation, and test data.
  train_prediction = tf.nn.softmax(logits)
  valid_prediction = tf.nn.softmax(model(tf_valid_dataset))
  test_prediction = tf.nn.softmax(model(tf_test_dataset))

In [6]:
num_steps = 2001

with tf.Session(graph=graph) as session:
  tf.initialize_all_variables().run()
  print('Initialized')
  for step in range(num_steps):
    offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
    batch_data = train_dataset[offset:(offset + batch_size), :, :, :]
    batch_labels = train_labels[offset:(offset + batch_size), :]
    feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels}
    _, l, predictions = session.run(
      [optimizer, loss, train_prediction], feed_dict=feed_dict)
    if (step % 50 == 0):
      print('Minibatch loss at step %d: %f' % (step, l))
      print('Minibatch accuracy: %.1f%%' % accuracy(predictions, batch_labels))
      print('Validation accuracy: %.1f%%' % accuracy(
        valid_prediction.eval(), valid_labels))
  print('Test accuracy: %.1f%%' % accuracy(test_prediction.eval(), test_labels))


Initialized
Minibatch loss at step 0: 3.031265
Minibatch accuracy: 12.5%
Validation accuracy: 10.0%
Minibatch loss at step 50: 2.156667
Minibatch accuracy: 18.8%
Validation accuracy: 28.2%
Minibatch loss at step 100: 1.561864
Minibatch accuracy: 43.8%
Validation accuracy: 42.9%
Minibatch loss at step 150: 0.438965
Minibatch accuracy: 87.5%
Validation accuracy: 74.1%
Minibatch loss at step 200: 0.975701
Minibatch accuracy: 68.8%
Validation accuracy: 75.7%
Minibatch loss at step 250: 1.427643
Minibatch accuracy: 56.2%
Validation accuracy: 77.6%
Minibatch loss at step 300: 0.358233
Minibatch accuracy: 93.8%
Validation accuracy: 79.4%
Minibatch loss at step 350: 0.439867
Minibatch accuracy: 93.8%
Validation accuracy: 77.1%
Minibatch loss at step 400: 0.274246
Minibatch accuracy: 93.8%
Validation accuracy: 80.0%
Minibatch loss at step 450: 0.806227
Minibatch accuracy: 75.0%
Validation accuracy: 79.7%
Minibatch loss at step 500: 0.636903
Minibatch accuracy: 87.5%
Validation accuracy: 80.5%
Minibatch loss at step 550: 1.117316
Minibatch accuracy: 75.0%
Validation accuracy: 81.2%
Minibatch loss at step 600: 0.293825
Minibatch accuracy: 93.8%
Validation accuracy: 81.8%
Minibatch loss at step 650: 0.917200
Minibatch accuracy: 81.2%
Validation accuracy: 82.9%
Minibatch loss at step 700: 0.862330
Minibatch accuracy: 75.0%
Validation accuracy: 82.9%
Minibatch loss at step 750: 0.030102
Minibatch accuracy: 100.0%
Validation accuracy: 83.3%
Minibatch loss at step 800: 0.480153
Minibatch accuracy: 87.5%
Validation accuracy: 83.3%
Minibatch loss at step 850: 0.896285
Minibatch accuracy: 75.0%
Validation accuracy: 83.2%
Minibatch loss at step 900: 0.481178
Minibatch accuracy: 87.5%
Validation accuracy: 84.2%
Minibatch loss at step 950: 0.364669
Minibatch accuracy: 81.2%
Validation accuracy: 83.8%
Minibatch loss at step 1000: 0.378895
Minibatch accuracy: 87.5%
Validation accuracy: 84.1%
Minibatch loss at step 1050: 0.594217
Minibatch accuracy: 87.5%
Validation accuracy: 83.7%
Minibatch loss at step 1100: 0.634955
Minibatch accuracy: 75.0%
Validation accuracy: 83.5%
Minibatch loss at step 1150: 0.444333
Minibatch accuracy: 81.2%
Validation accuracy: 84.8%
Minibatch loss at step 1200: 0.796880
Minibatch accuracy: 62.5%
Validation accuracy: 84.9%
Minibatch loss at step 1250: 0.651030
Minibatch accuracy: 81.2%
Validation accuracy: 85.0%
Minibatch loss at step 1300: 0.227966
Minibatch accuracy: 93.8%
Validation accuracy: 84.3%
Minibatch loss at step 1350: 0.674823
Minibatch accuracy: 87.5%
Validation accuracy: 84.6%
Minibatch loss at step 1400: 0.368985
Minibatch accuracy: 93.8%
Validation accuracy: 85.1%
Minibatch loss at step 1450: 0.283513
Minibatch accuracy: 93.8%
Validation accuracy: 85.5%
Minibatch loss at step 1500: 0.451722
Minibatch accuracy: 87.5%
Validation accuracy: 85.5%
Minibatch loss at step 1550: 0.652052
Minibatch accuracy: 93.8%
Validation accuracy: 84.7%
Minibatch loss at step 1600: 1.027401
Minibatch accuracy: 68.8%
Validation accuracy: 85.0%
Minibatch loss at step 1650: 0.435238
Minibatch accuracy: 81.2%
Validation accuracy: 85.5%
Minibatch loss at step 1700: 0.572957
Minibatch accuracy: 87.5%
Validation accuracy: 84.3%
Minibatch loss at step 1750: 0.421074
Minibatch accuracy: 87.5%
Validation accuracy: 85.7%
Minibatch loss at step 1800: 0.266938
Minibatch accuracy: 87.5%
Validation accuracy: 85.7%
Minibatch loss at step 1850: 0.582889
Minibatch accuracy: 75.0%
Validation accuracy: 85.6%
Minibatch loss at step 1900: 0.274091
Minibatch accuracy: 93.8%
Validation accuracy: 84.8%
Minibatch loss at step 1950: 0.503351
Minibatch accuracy: 81.2%
Validation accuracy: 86.3%
Minibatch loss at step 2000: 0.140980
Minibatch accuracy: 93.8%
Validation accuracy: 86.0%
Test accuracy: 92.7%

Problem 1

The convolutional model above uses convolutions with stride 2 to reduce the dimensionality. Replace the strides by a max pooling operation (nn.max_pool()) of stride 2 and kernel size 2.



Problem 2

Try to get the best performance you can using a convolutional net. Look for example at the classic LeNet5 architecture, adding Dropout, and/or adding learning rate decay.



In [5]:
initial_learning_rate_value = 0.05
batch_size = 16
patch_size = 5
depth = 16
depth2 = 16
num_hidden = 64
num_hidden2 = 32

graph = tf.Graph()

with graph.as_default():

  # Input data.
  with tf.name_scope('datasets') as scope:
    tf_train_dataset = tf.placeholder(
      tf.float32, shape=(batch_size, image_size, image_size, num_channels))
    tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
    tf_valid_dataset = tf.constant(valid_dataset)
    tf_test_dataset = tf.constant(test_dataset)

  # learning rate decay
  with tf.name_scope('hyperparams') as scope:
    global_step = tf.Variable(0)
    learning_rate = tf.train.exponential_decay(initial_learning_rate_value, global_step, 1, 0.9999)
  
  # Variables.
  with tf.name_scope('layers') as scope:
    layer1_weights = tf.Variable(tf.truncated_normal([patch_size, patch_size, num_channels, depth], stddev=0.1))
    layer1_biases = tf.Variable(tf.zeros([depth]))

    layer2_weights = tf.Variable(tf.truncated_normal([patch_size, patch_size, depth, depth], stddev=0.1))
    layer2_biases = tf.Variable(tf.constant(1.0, shape=[depth]))

    layer3_weights = tf.Variable(tf.truncated_normal([patch_size, patch_size, depth, depth2], stddev=0.1))
    layer3_biases = tf.Variable(tf.constant(1.0, shape=[depth2]))

    layer4_weights = tf.Variable(tf.truncated_normal([image_size // 7 * image_size // 7 * depth2, num_hidden], stddev=0.1))
    layer4_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden]))

    layer5_weights = tf.Variable(tf.truncated_normal([num_hidden, num_hidden2], stddev=0.1))
    layer5_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden2]))

    layer6_weights = tf.Variable(tf.truncated_normal([num_hidden2, num_labels], stddev=0.1))
    layer6_biases = tf.Variable(tf.constant(1.0, shape=[num_labels]))
  
  # Model.
  def model(data):
    # data ---> conv2d | layer1 ---> relu --> max_pool
    #
    # data input tensor:      [16, 28, 28, 1]     4D tensor: (batch, h, w, ch)
    # layer1 filter tensor:   [5, 5, 1, 16]
    # conv2d output tensor:   [16, 28, 28, 16]
    # relu output tensor:     [16, 28, 28, 16]
    # max_pool output tensor: [16, 14, 14 16]
    
    conv = tf.nn.conv2d(data, layer1_weights, [1, 1, 1, 1], padding='SAME')    
    hidden = tf.nn.relu(conv + layer1_biases)
    hidden = tf.nn.max_pool(hidden, [1,2,2,1], [1,2,2,1], padding='SAME')
        
    # hidden ---> conv2d | layer2 ---> relu --> max_pool
    #
    # hidden input tensor:    [16, 14, 14, 16]
    # layer2 filter tensor:   [5, 5, 16, 16]
    # conv2d output tensor:   [16, 14, 14, 16]
    # relu output tensor:     [16, 14, 14, 16]
    # max_pool output tensor: [16, 7, 7, 16]
    
    conv = tf.nn.conv2d(hidden, layer2_weights, [1, 1, 1, 1], padding='SAME')
    hidden = tf.nn.relu(conv + layer2_biases)
    hidden = tf.nn.max_pool(hidden, [1,2,2,1], [1,2,2,1], padding='SAME')
        
    # hidden ---> conv2d | layer3 ---> relu --> max_pool
    #
    # hidden input tensor:    [16, 7, 7, 16]
    # layer3 filter tensor:   [5, 5, 16, 32]
    # conv2d output tensor:   [16, 7, 7, 32]
    # relu output tensor:     [16, 7, 7, 32]
    # max_pool output tensor: [16, 4, 4, 32]
    
    conv = tf.nn.conv2d(hidden, layer3_weights, [1, 1, 1, 1], padding='SAME')
    hidden = tf.nn.relu(conv + layer3_biases)
    hidden = tf.nn.max_pool(hidden, [1,2,2,1], [1,2,2,1], padding='SAME')
    
    # hidden ---> relu --> dropout
    #
    # hidden input tensor:    [16, 4, 4, 32]
    # reshape tensor:         [16, 512]
    # layer4 tensor:          [512, 64] (512 = 4*4*32)
    # relu tensor:            [16, 64]
    
    shape = hidden.get_shape().as_list()    
    reshape = tf.reshape(hidden, [shape[0], shape[1] * shape[2] * shape[3]])
    hidden = tf.nn.relu(tf.matmul(reshape, layer4_weights) + layer4_biases)
    hidden = tf.nn.dropout(hidden, 0.75)

    hidden = tf.nn.relu(tf.matmul(hidden, layer5_weights) + layer5_biases)
    hidden = tf.nn.dropout(hidden, 0.75)

    output = tf.matmul(hidden, layer6_weights) + layer6_biases
    return output
  
  # Training computation.
  logits = model(tf_train_dataset)
  loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits, tf_train_labels))
    
  # Optimizer.
  optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
  
  # Predictions for the training, validation, and test data.
  with tf.name_scope("train") as scope:
    train_prediction = tf.nn.softmax(logits)
  with tf.name_scope("valid") as scope:
    valid_prediction = tf.nn.softmax(model(tf_valid_dataset))
  with tf.name_scope("test") as scope:
    test_prediction = tf.nn.softmax(model(tf_test_dataset))

In [6]:
num_steps = 1001

with tf.Session(graph=graph) as session:
  merged = tf.merge_all_summaries()
  writer = tf.train.SummaryWriter("/tmp/mnist_logs", session.graph_def)
  tf.initialize_all_variables().run()
  print('Initialized')
  for step in range(num_steps):
    offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
    batch_data = train_dataset[offset:(offset + batch_size), :, :, :]
    batch_labels = train_labels[offset:(offset + batch_size), :]
    feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels}
    _, l, predictions = session.run(
      [optimizer, loss, train_prediction], feed_dict=feed_dict)
    if (step % 50 == 0):
      print('Minibatch loss at step %d: %f' % (step, l))
      print("Learning rate at step %d: %f" % (step, learning_rate.eval()))
      print('Minibatch accuracy: %.1f%%' % accuracy(predictions, batch_labels))
      print('Validation accuracy: %.1f%%\n' % accuracy(
        valid_prediction.eval(), valid_labels))
      #writer.add_summary(summary_result)
    if (step % 200 == 0):
      print('Test accuracy: %.1f%%\n' % accuracy(test_prediction.eval(), test_labels))
    
  print('Final test accuracy: %.1f%%' % accuracy(test_prediction.eval(), test_labels))


Initialized
Minibatch loss at step 0: 2.875277
Learning rate at step 0: 0.049995
Minibatch accuracy: 12.5%
Validation accuracy: 10.2%

Test accuracy: 9.8%

Minibatch loss at step 50: 2.318088
Learning rate at step 50: 0.049746
Minibatch accuracy: 12.5%
Validation accuracy: 10.8%

Minibatch loss at step 100: 2.383283
Learning rate at step 100: 0.049497
Minibatch accuracy: 6.2%
Validation accuracy: 14.8%

Minibatch loss at step 150: 1.766681
Learning rate at step 150: 0.049251
Minibatch accuracy: 31.2%
Validation accuracy: 25.5%

Minibatch loss at step 200: 1.743855
Learning rate at step 200: 0.049005
Minibatch accuracy: 31.2%
Validation accuracy: 35.5%

Test accuracy: 38.3%

Minibatch loss at step 250: 1.944300
Learning rate at step 250: 0.048760
Minibatch accuracy: 37.5%
Validation accuracy: 52.4%

Minibatch loss at step 300: 1.139620
Learning rate at step 300: 0.048517
Minibatch accuracy: 62.5%
Validation accuracy: 59.1%

Minibatch loss at step 350: 1.158859
Learning rate at step 350: 0.048275
Minibatch accuracy: 62.5%
Validation accuracy: 61.5%

Minibatch loss at step 400: 0.747494
Learning rate at step 400: 0.048034
Minibatch accuracy: 68.8%
Validation accuracy: 66.8%

Test accuracy: 73.5%

Minibatch loss at step 450: 1.253289
Learning rate at step 450: 0.047795
Minibatch accuracy: 75.0%
Validation accuracy: 69.8%

Minibatch loss at step 500: 0.857527
Learning rate at step 500: 0.047556
Minibatch accuracy: 75.0%
Validation accuracy: 73.3%

Minibatch loss at step 550: 0.909522
Learning rate at step 550: 0.047319
Minibatch accuracy: 75.0%
Validation accuracy: 73.0%

Minibatch loss at step 600: 0.670451
Learning rate at step 600: 0.047083
Minibatch accuracy: 75.0%
Validation accuracy: 76.1%

Test accuracy: 83.2%

Minibatch loss at step 650: 1.172734
Learning rate at step 650: 0.046848
Minibatch accuracy: 68.8%
Validation accuracy: 75.8%

Minibatch loss at step 700: 0.785372
Learning rate at step 700: 0.046614
Minibatch accuracy: 81.2%
Validation accuracy: 76.3%

Minibatch loss at step 750: 0.179830
Learning rate at step 750: 0.046382
Minibatch accuracy: 93.8%
Validation accuracy: 78.5%

Minibatch loss at step 800: 0.983442
Learning rate at step 800: 0.046150
Minibatch accuracy: 75.0%
Validation accuracy: 77.3%

Test accuracy: 83.3%

Minibatch loss at step 850: 0.949145
Learning rate at step 850: 0.045920
Minibatch accuracy: 68.8%
Validation accuracy: 75.7%

Minibatch loss at step 900: 0.515690
Learning rate at step 900: 0.045691
Minibatch accuracy: 81.2%
Validation accuracy: 80.2%

Minibatch loss at step 950: 0.583251
Learning rate at step 950: 0.045463
Minibatch accuracy: 75.0%
---------------------------------------------------------------------------
KeyboardInterrupt                         Traceback (most recent call last)
<ipython-input-6-ef0234371bdd> in <module>()
     18       print('Minibatch accuracy: %.1f%%' % accuracy(predictions, batch_labels))
     19       print('Validation accuracy: %.1f%%\n' % accuracy(
---> 20         valid_prediction.eval(), valid_labels))
     21       #writer.add_summary(summary_result)
     22     if (step % 200 == 0):

/Users/rringham/tensorflow/lib/python2.7/site-packages/tensorflow/python/framework/ops.pyc in eval(self, feed_dict, session)
    458 
    459     """
--> 460     return _eval_using_default_session(self, feed_dict, self.graph, session)
    461 
    462 

/Users/rringham/tensorflow/lib/python2.7/site-packages/tensorflow/python/framework/ops.pyc in _eval_using_default_session(tensors, feed_dict, graph, session)
   2908                        "the tensor's graph is different from the session's "
   2909                        "graph.")
-> 2910   return session.run(tensors, feed_dict)
   2911 
   2912 

/Users/rringham/tensorflow/lib/python2.7/site-packages/tensorflow/python/client/session.pyc in run(self, fetches, feed_dict)
    366 
    367     # Run request and get response.
--> 368     results = self._do_run(target_list, unique_fetch_targets, feed_dict_string)
    369 
    370     # User may have fetched the same tensor multiple times, but we

/Users/rringham/tensorflow/lib/python2.7/site-packages/tensorflow/python/client/session.pyc in _do_run(self, target_list, fetch_list, feed_dict)
    426 
    427       return tf_session.TF_Run(self._session, feed_dict, fetch_list,
--> 428                                target_list)
    429 
    430     except tf_session.StatusNotOK as e:

KeyboardInterrupt: 

In [ ]:


In [ ]: