In [1]:
    
# These are all the modules we'll be using later. Make sure you can import them
# before proceeding further.
from __future__ import print_function
import numpy as np
import tensorflow as tf
from six.moves import cPickle as pickle
from six.moves import range
import matplotlib.pyplot as plt
    
In [2]:
    
pickle_file = 'notMNIST.pickle'
with open(pickle_file, 'rb') as f:
  save = pickle.load(f)
  train_dataset = save['train_dataset']
  train_labels = save['train_labels']
  valid_dataset = save['valid_dataset']
  valid_labels = save['valid_labels']
  test_dataset = save['test_dataset']
  test_labels = save['test_labels']
  del save  # hint to help gc free up memory
  print('Training set', train_dataset.shape, train_labels.shape)
  print('Validation set', valid_dataset.shape, valid_labels.shape)
  print('Test set', test_dataset.shape, test_labels.shape)
    
    
In [3]:
    
image_size = 28
num_labels = 10
num_channels = 1 # grayscale
import numpy as np
def reformat(dataset, labels):
  dataset = dataset.reshape((-1, image_size, image_size, num_channels)).astype(np.float32)
  # Map 1 to [0.0, 1.0, 0.0 ...], 2 to [0.0, 0.0, 1.0 ...]
  labels = (np.arange(num_labels) == labels[:,None]).astype(np.float32)
  return dataset, labels
train_dataset, train_labels = reformat(train_dataset, train_labels)
valid_dataset, valid_labels = reformat(valid_dataset, valid_labels)
test_dataset, test_labels = reformat(test_dataset, test_labels)
print('Training set', train_dataset.shape, train_labels.shape)
print('Validation set', valid_dataset.shape, valid_labels.shape)
print('Test set', test_dataset.shape, test_labels.shape)
    
    
In [4]:
    
def accuracy(predictions, labels):
  return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))
          / predictions.shape[0])
    
Let's build a small network with two convolutional layers, followed by one fully connected layer. Convolutional networks are more expensive computationally, so we'll limit its depth and number of fully connected nodes.
In [5]:
    
batch_size = 16
patch_size = 5
depth = 16
num_hidden = 64
graph = tf.Graph()
with graph.as_default():
  # Input data.
  tf_train_dataset = tf.placeholder(tf.float32, shape=(batch_size, image_size, image_size, num_channels))
  tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
  tf_valid_dataset = tf.constant(valid_dataset)
  tf_test_dataset = tf.constant(test_dataset)
  
  # Variables.
  layer1_weights = tf.Variable(tf.truncated_normal([patch_size, patch_size, num_channels, depth], stddev=0.1))
  layer1_biases = tf.Variable(tf.zeros([depth]))
  layer2_weights = tf.Variable(tf.truncated_normal([patch_size, patch_size, depth, depth], stddev=0.1))
  layer2_biases = tf.Variable(tf.constant(1.0, shape=[depth]))
  layer3_weights = tf.Variable(tf.truncated_normal([image_size // 4 * image_size // 4 * depth, num_hidden], stddev=0.1))
  layer3_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden]))
  layer4_weights = tf.Variable(tf.truncated_normal([num_hidden, num_labels], stddev=0.1))
  layer4_biases = tf.Variable(tf.constant(1.0, shape=[num_labels]))
  
  # Model.
  def model(data):
    conv = tf.nn.conv2d(data, layer1_weights, [1, 2, 2, 1], padding='SAME')
    hidden = tf.nn.relu(conv + layer1_biases)
    conv = tf.nn.conv2d(hidden, layer2_weights, [1, 2, 2, 1], padding='SAME')
    hidden = tf.nn.relu(conv + layer2_biases)
    shape = hidden.get_shape().as_list()
    reshape = tf.reshape(hidden, [shape[0], shape[1] * shape[2] * shape[3]])
    hidden = tf.nn.relu(tf.matmul(reshape, layer3_weights) + layer3_biases)
    return tf.matmul(hidden, layer4_weights) + layer4_biases
  
  # Training computation.
  logits = model(tf_train_dataset)
  loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits, tf_train_labels))
  # Optimizer w/ learning rate decay.
  global_step = tf.Variable(0)
  learning_rate = tf.train.exponential_decay(0.05, global_step, 1000, 0.9)
  optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)
  
  # Predictions for the training, validation, and test data.
  train_prediction = tf.nn.softmax(logits)
  valid_prediction = tf.nn.softmax(model(tf_valid_dataset))
  test_prediction = tf.nn.softmax(model(tf_test_dataset))
    
In [6]:
    
num_steps = 1001
with tf.Session(graph=graph) as session:
  tf.initialize_all_variables().run()
  print('Initialized')
  for step in range(num_steps):
    offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
    batch_data = train_dataset[offset:(offset + batch_size), :, :, :]
    batch_labels = train_labels[offset:(offset + batch_size), :]
    feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels}
    _, l, predictions = session.run(
      [optimizer, loss, train_prediction], feed_dict=feed_dict)
    if (step % 100 == 0):
      print('Minibatch loss at step %d: %f' % (step, l))
      print('Minibatch accuracy: %.1f%%' % accuracy(predictions, batch_labels))
      print('Validation accuracy: %.1f%%' % accuracy(
        valid_prediction.eval(), valid_labels))
  print('Test accuracy: %.1f%%' % accuracy(test_prediction.eval(), test_labels))
    
    
In [7]:
    
batch_size = 16
patch_size = 5
depth = 16
num_hidden = 64
graph = tf.Graph()
with graph.as_default():
  # Input data.
  tf_train_dataset = tf.placeholder(tf.float32, shape=(batch_size, image_size, image_size, num_channels))
  tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
  tf_valid_dataset = tf.constant(valid_dataset)
  tf_test_dataset = tf.constant(test_dataset)
  
  # Variables.
  layer1_weights = tf.Variable(tf.truncated_normal([patch_size, patch_size, num_channels, depth], stddev=0.1))
  layer1_biases = tf.Variable(tf.zeros([depth]))
  layer2_weights = tf.Variable(tf.truncated_normal([patch_size, patch_size, depth, depth], stddev=0.1))
  layer2_biases = tf.Variable(tf.constant(1.0, shape=[depth]))
  layer3_weights = tf.Variable(tf.truncated_normal([image_size // 4 * image_size // 4 * depth, num_hidden], stddev=0.1))
  layer3_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden]))
  layer4_weights = tf.Variable(tf.truncated_normal([num_hidden, num_labels], stddev=0.1))
  layer4_biases = tf.Variable(tf.constant(1.0, shape=[num_labels]))    
    
    
  # Model.
  def model(data):
    conv = tf.nn.conv2d(data, layer1_weights, [1, 1, 1, 1], padding='SAME')
    pool = tf.nn.max_pool(conv, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME')
    hidden = tf.nn.relu(pool + layer1_biases)
            
    conv = tf.nn.conv2d(hidden, layer2_weights, [1, 1, 1, 1], padding='SAME')
    pool = tf.nn.max_pool(conv, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME')
    hidden = tf.nn.relu(pool + layer2_biases)
    
    shape = hidden.get_shape().as_list()
    reshape = tf.reshape(hidden, [shape[0], shape[1] * shape[2] * shape[3]])
    hidden = tf.nn.relu(tf.matmul(reshape, layer3_weights) + layer3_biases)
    return tf.matmul(hidden, layer4_weights) + layer4_biases
  
  # Training computation.
  logits = model(tf_train_dataset)
  loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits, tf_train_labels))
  # Optimizer w/ learning rate decay.
  global_step = tf.Variable(0)
  learning_rate = tf.train.exponential_decay(0.05, global_step, 1000, 0.9)
  optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)
  
  # Predictions for the training, validation, and test data.
  train_prediction = tf.nn.softmax(logits)
  valid_prediction = tf.nn.softmax(model(tf_valid_dataset))
  test_prediction = tf.nn.softmax(model(tf_test_dataset))
    
In [20]:
    
num_steps = 1001
with tf.Session(graph=graph) as session:
  tf.global_variables_initializer().run()
  print('Initialized')
  for step in range(num_steps):
    offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
    batch_data = train_dataset[offset:(offset + batch_size), :, :, :]
    batch_labels = train_labels[offset:(offset + batch_size), :]
    feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels}
    _, l, predictions = session.run(
      [optimizer, loss, train_prediction], feed_dict=feed_dict)
    if (step % 100 == 0):
      print('Minibatch loss at step %d: %f' % (step, l))
      print('Minibatch accuracy: %.1f%%' % accuracy(predictions, batch_labels))
      print('Validation accuracy: %.1f%%' % accuracy(
        valid_prediction.eval(), valid_labels))
  print('Test accuracy: %.1f%%' % accuracy(test_prediction.eval(), test_labels))
    
    
In [49]:
    
batch_size = 32#16#94.8%
patch_size = 5
depth = 16
num_hidden = 128#64
beta = 0.005
graph = tf.Graph()
with graph.as_default():
  # Placeholder to control dropout probability.
  keep_prob = tf.placeholder(tf.float32)
  keep_prob_conv = tf.placeholder(tf.float32)
    
  # Input data.
  tf_train_dataset = tf.placeholder(tf.float32, shape=(batch_size, image_size, image_size, num_channels))
  tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
  tf_valid_dataset = tf.constant(valid_dataset)
  tf_test_dataset = tf.constant(test_dataset)
  
  # Variables.
  layer1_weights = tf.Variable(tf.truncated_normal([patch_size, patch_size, num_channels, depth], stddev=0.1))
  layer1_biases = tf.Variable(tf.zeros([depth]))
  layer2_weights = tf.Variable(tf.truncated_normal([patch_size, patch_size, depth, depth], stddev=0.1))
  layer2_biases = tf.Variable(tf.constant(1.0, shape=[depth]))
  layer2a_weights = tf.Variable(tf.truncated_normal([patch_size, patch_size, depth, depth], stddev=0.1))
  layer2a_biases = tf.Variable(tf.constant(1.0, shape=[depth]))
  layer3_weights = tf.Variable(tf.truncated_normal([4 * 4 * depth, num_hidden], stddev=0.1))
  layer3_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden]))
  layer4_weights = tf.Variable(tf.truncated_normal([num_hidden, num_labels], stddev=0.1))
  layer4_biases = tf.Variable(tf.constant(1.0, shape=[num_labels]))    
    
    
  # Model.
  def model(data):
    conv = tf.nn.conv2d(data, layer1_weights, [1, 1, 1, 1], padding='SAME')
    pool = tf.nn.max_pool(conv, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME')
    hidden = tf.nn.relu(pool + layer1_biases)
    conv = tf.nn.conv2d(hidden, layer2_weights, [1, 1, 1, 1], padding='SAME')
    pool = tf.nn.max_pool(conv, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME')
    hidden = tf.nn.relu(pool + layer2_biases)
    conv = tf.nn.conv2d(hidden, layer2a_weights, [1, 1, 1, 1], padding='SAME')
    pool = tf.nn.max_pool(conv, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME')
    hidden = tf.nn.relu(pool + layer2a_biases)
    
    shape = hidden.get_shape().as_list()
    reshape = tf.reshape(hidden, [shape[0], shape[1] * shape[2] * shape[3]])
    hidden = tf.nn.relu(tf.matmul(reshape, layer3_weights) + layer3_biases)
    drop = tf.nn.dropout(hidden, keep_prob)
    
    return tf.matmul(drop, layer4_weights) + layer4_biases
  
  # Training computation.
  logits = model(tf_train_dataset)
  loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits, tf_train_labels))
  # Add the regularization term to the loss.
  loss += beta * (tf.nn.l2_loss(layer3_weights) + tf.nn.l2_loss(layer4_weights))
  # Optimizer w/ learning rate decay.
  global_step = tf.Variable(0)
  learning_rate = tf.train.exponential_decay(0.1, global_step, 3000, 0.01)
  optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)
  
  # Predictions for the training, validation, and test data.
  train_prediction = tf.nn.softmax(logits)
  valid_prediction = tf.nn.softmax(model(tf_valid_dataset))
  test_prediction = tf.nn.softmax(model(tf_test_dataset))
    
In [112]:
    
num_steps = 3001
steps = np.array([])
loss_batch = np.array([])
acc_valid = np.array([])
with tf.Session(graph=graph) as session:
  tf.global_variables_initializer().run()
  print('Initialized')
  for step in range(num_steps):
    offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
    batch_data = train_dataset[offset:(offset + batch_size), :, :, :]
    batch_labels = train_labels[offset:(offset + batch_size), :]
    feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels, keep_prob:1.0, keep_prob_conv:1.0}
    feed_dict_w_dropout = {tf_train_dataset : batch_data, tf_train_labels : batch_labels, keep_prob:0.5, keep_prob_conv:1.0}
    _, l, predictions = session.run([optimizer, loss, train_prediction], feed_dict=feed_dict_w_dropout)
    if (step % 100 == 0):
      print('Minibatch loss at step %d: %f' % (step, l))
      print('Minibatch accuracy: %.1f%%' % accuracy(predictions, batch_labels))
      print('Validation accuracy: %.1f%%' % accuracy(valid_prediction.eval(feed_dict=feed_dict), valid_labels))
    
      steps = np.append(steps, step)
      loss_batch = np.append(loss_batch, l)
      acc_valid = np.append(acc_valid, [accuracy(valid_prediction.eval(feed_dict=feed_dict), valid_labels)])
    
  print('Test accuracy: %.1f%%' % accuracy(test_prediction.eval(feed_dict=feed_dict), test_labels))
    
    
In [113]:
    
print('Loss evolution')
s1, = plt.plot(steps, loss_batch)
s2, = plt.plot(steps, acc_valid/100)
plt.legend([s1, s2], ['loss_batch','accuracy_valid'])
plt.show()
    
    
    
In [ ]: