Previously in 2_fullyconnected.ipynb and 3_regularization.ipynb, we trained fully connected networks to classify notMNIST characters.
The goal of this assignment is make the neural network convolutional.
In [1]:
    
# These are all the modules we'll be using later. Make sure you can import them
# before proceeding further.
from __future__ import print_function
import numpy as np
import tensorflow as tf
from six.moves import cPickle as pickle
from six.moves import range
import os
    
In [2]:
    
# Create data directory path
dpath = os.path.abspath(os.path.join(os.getcwd(), os.pardir))
dpath = os.path.join(dpath, 'data')
# create pickle data file path
pickle_file = os.path.join(dpath,'notMNIST.pickle')
with open(pickle_file, 'rb') as f:
    save = pickle.load(f)
    train_dataset = save['train_dataset']
    train_labels = save['train_labels']
    valid_dataset = save['valid_dataset']
    valid_labels = save['valid_labels']
    test_dataset = save['test_dataset']
    test_labels = save['test_labels']
    del save  # hint to help gc free up memory
    # Note: wouldn't getting out of with remove save object?
    
print('Training set', train_dataset.shape, train_labels.shape)
print('Validation set', valid_dataset.shape, valid_labels.shape)
print('Test set', test_dataset.shape, test_labels.shape)
    
    
Reformat into a TensorFlow-friendly shape:
In [3]:
    
image_size = 28
num_labels = 10
num_channels = 1 # grayscale
import numpy as np
def reformat(dataset, labels):
    dataset = dataset.reshape(
        (-1, image_size, image_size, num_channels)).astype(np.float32)
    labels = (np.arange(num_labels) == labels[:,None]).astype(np.float32)
    return (dataset, labels)
train_dataset, train_labels = reformat(train_dataset, train_labels)
valid_dataset, valid_labels = reformat(valid_dataset, valid_labels)
test_dataset, test_labels = reformat(test_dataset, test_labels)
print('Training set', train_dataset.shape, train_labels.shape)
print('Validation set', valid_dataset.shape, valid_labels.shape)
print('Test set', test_dataset.shape, test_labels.shape)
    
    
In [4]:
    
def accuracy(predictions, labels):
    return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))
            / predictions.shape[0])
    
Let's build a small network with two convolutional layers, followed by one fully connected layer. Convolutional networks are more expensive computationally, so we'll limit its depth and number of fully connected nodes.
Note: Initial configuration was slightly changed while experimenting.
In [5]:
    
batch_size = 64
# patch_size is the size of the square of the 2d convolution (~)
patch_size = 5
depth = 16
num_hidden = 64
graph = tf.Graph()
with graph.as_default():
    # Input data.
    tf_train_dataset = tf.placeholder(
      tf.float32, shape=(batch_size, image_size, image_size, num_channels))
    tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
    tf_valid_dataset = tf.constant(valid_dataset)
    tf_test_dataset = tf.constant(test_dataset)
  
    # Variables.
    # layerX_weights are the kernels of the convolution
    layer1_weights = tf.Variable(tf.truncated_normal(
        [patch_size, patch_size, num_channels, depth], stddev=0.1))
    layer1_biases = tf.Variable(tf.zeros([depth]))
    layer2_weights = tf.Variable(tf.truncated_normal(
        [patch_size, patch_size, depth, depth], stddev=0.1))
    layer2_biases = tf.Variable(tf.constant(1.0, shape=[depth]))
    layer3_weights = tf.Variable(tf.truncated_normal(
        [image_size // 4 * image_size // 4 * depth, num_hidden], stddev=0.1))
    layer3_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden]))
    layer4_weights = tf.Variable(tf.truncated_normal(
        [num_hidden, num_labels], stddev=0.1))
    layer4_biases = tf.Variable(tf.constant(1.0, shape=[num_labels]))
  
    # Model.
    def model(data):
        conv = tf.nn.conv2d(data, layer1_weights, [1, 2, 2, 1], padding='SAME')
        hidden = tf.nn.relu(conv + layer1_biases)
        conv = tf.nn.conv2d(hidden, layer2_weights, [1, 2, 2, 1], padding='SAME')
        hidden = tf.nn.relu(conv + layer2_biases)
        shape = hidden.get_shape().as_list()
        # debug:
        # print(shape)
        # exit()
        # shape[0] is batch size !
        # we reshape to feed the output of the convolution layer to the fully connected hidden layer.
        reshape = tf.reshape(hidden, [shape[0], shape[1] * shape[2] * shape[3]])
        hidden = tf.nn.relu(tf.matmul(reshape, layer3_weights) + layer3_biases)
        return(tf.matmul(hidden, layer4_weights) + layer4_biases)
  
    # Training computation.
    logits = model(tf_train_dataset)
    loss = tf.reduce_mean(
      tf.nn.softmax_cross_entropy_with_logits(labels=tf_train_labels, logits=logits))
    
    # Optimizer.
    optimizer = tf.train.GradientDescentOptimizer(0.05).minimize(loss)
  
    # Predictions for the training, validation, and test data.
    train_prediction = tf.nn.softmax(logits)
    valid_prediction = tf.nn.softmax(model(tf_valid_dataset))
    test_prediction = tf.nn.softmax(model(tf_test_dataset))
    
In [6]:
    
num_steps = 5001
with tf.Session(graph=graph) as session:
    tf.global_variables_initializer().run()
    print('Initialized')
    for step in range(num_steps):
        offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
        batch_data = train_dataset[offset:(offset + batch_size), :, :, :]
        batch_labels = train_labels[offset:(offset + batch_size), :]
        feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels}
        _, l, predictions = session.run(
            [optimizer, loss, train_prediction], feed_dict=feed_dict)
        if (step % 500 == 0):
            print('Minibatch loss at step %d: %f' % (step, l))
            print('Minibatch accuracy: %.1f%%' % accuracy(predictions, batch_labels))
            print('Validation accuracy: %.1f%%' % accuracy(
                valid_prediction.eval(), valid_labels))
    
    print('Test accuracy: %.1f%%' % accuracy(test_prediction.eval(), test_labels))
    
    
In [7]:
    
batch_size = 64
patch_size = 5
depth = 16
num_hidden = 64
graph = tf.Graph()
with graph.as_default():
    # Input data.
    tf_train_dataset = tf.placeholder(
      tf.float32, shape=(batch_size, image_size, image_size, num_channels))
    tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
    tf_valid_dataset = tf.constant(valid_dataset)
    tf_test_dataset = tf.constant(test_dataset)
  
    # Variables.
    # layerX_weights are the kernels of the convolution
    layer1_weights = tf.Variable(tf.truncated_normal(
        [patch_size, patch_size, num_channels, depth], stddev=0.1))
    layer1_biases = tf.Variable(tf.zeros([depth]))
    layer2_weights = tf.Variable(tf.truncated_normal(
        [patch_size, patch_size, depth, depth], stddev=0.1))
    layer2_biases = tf.Variable(tf.constant(1.0, shape=[depth]))
    # we need to change layer 3 size because of the addition of max_pool
    # 28//16 = 1 but we need 2 - hard code it for now!
    layer3_weights = tf.Variable(tf.truncated_normal(
        [(image_size // 16 +1) * (image_size // 16 +1) * depth, num_hidden], stddev=0.1))
    layer3_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden]))
    layer4_weights = tf.Variable(tf.truncated_normal(
        [num_hidden, num_labels], stddev=0.1))
    layer4_biases = tf.Variable(tf.constant(1.0, shape=[num_labels]))
  
    # Model.
    def model(data):
        # print(data.get_shape().as_list())
        # [64, 28, 28, 1]
        conv = tf.nn.conv2d(data, layer1_weights, [1, 2, 2, 1], padding='SAME')
        hidden = tf.nn.relu(conv + layer1_biases)
        # print(hidden.get_shape().as_list())
        # [64, 14, 14, 16]
        mpool = tf.nn.max_pool(hidden, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME')
        # print(mpool.get_shape().as_list())
        # [64, 7, 7, 16]
        conv = tf.nn.conv2d(mpool, layer2_weights, [1, 2, 2, 1], padding='SAME')
        hidden = tf.nn.relu(conv + layer2_biases)
        # print(hidden.get_shape().as_list())
        # [64, 4, 4, 16]
        mpool = tf.nn.max_pool(hidden, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME')
        shape = mpool.get_shape().as_list()
        # print(shape)
        # [64, 2, 2, 16]
        reshape = tf.reshape(mpool, [shape[0], shape[1] * shape[2] * shape[3]])
        # print(reshape.get_shape().as_list())
        # [64, 64]
        hidden = tf.nn.relu(tf.matmul(reshape, layer3_weights) + layer3_biases)
        return(tf.matmul(hidden, layer4_weights) + layer4_biases)
  
    # Training computation.
    logits = model(tf_train_dataset)
    loss = tf.reduce_mean(
      tf.nn.softmax_cross_entropy_with_logits(labels=tf_train_labels, logits=logits))
    
    # Optimizer.
    optimizer = tf.train.GradientDescentOptimizer(0.05).minimize(loss)
  
    # Predictions for the training, validation, and test data.
    train_prediction = tf.nn.softmax(logits)
    valid_prediction = tf.nn.softmax(model(tf_valid_dataset))
    test_prediction = tf.nn.softmax(model(tf_test_dataset))
    
In [8]:
    
num_steps = 5001
with tf.Session(graph=graph) as session:
    tf.global_variables_initializer().run()
    print('Initialized')
    for step in range(num_steps):
        offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
        batch_data = train_dataset[offset:(offset + batch_size), :, :, :]
        batch_labels = train_labels[offset:(offset + batch_size), :]
        feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels}
        _, l, predictions = session.run(
            [optimizer, loss, train_prediction], feed_dict=feed_dict)
        if (step % 500 == 0):
            print('Minibatch loss at step %d: %f' % (step, l))
            print('Minibatch accuracy: %.1f%%' % accuracy(predictions, batch_labels))
            print('Validation accuracy: %.1f%%' % accuracy(
                valid_prediction.eval(), valid_labels))
    
    print('Test accuracy: %.1f%%' % accuracy(test_prediction.eval(), test_labels))
    
    
We got almost the same accuracy as with the previous effort. We likely didn't make efficient use of max pooling. Let's try again:
In [9]:
    
batch_size = 64
patch_size = 5
depth = 16
num_hidden = 64
graph = tf.Graph()
with graph.as_default():
    # Input data.
    tf_train_dataset = tf.placeholder(
      tf.float32, shape=(batch_size, image_size, image_size, num_channels))
    tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
    tf_valid_dataset = tf.constant(valid_dataset)
    tf_test_dataset = tf.constant(test_dataset)
  
    # Variables.
    # layerX_weights are the kernels of the convolution
    layer1_weights = tf.Variable(tf.truncated_normal(
        [patch_size, patch_size, num_channels, depth], stddev=0.1))
    layer1_biases = tf.Variable(tf.zeros([depth]))
    layer2_weights = tf.Variable(tf.truncated_normal(
        [patch_size, patch_size, depth, depth], stddev=0.1))
    layer2_biases = tf.Variable(tf.constant(1.0, shape=[depth]))
    # we need to change layer 3 size because of the addition of max_pool
    # 28//16 = 1 but we need 2 - hard code it for now!
    layer3_weights = tf.Variable(tf.truncated_normal(
        [round(image_size / 8) * round(image_size / 8) * depth, num_hidden], stddev=0.1))
    layer3_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden]))
    layer4_weights = tf.Variable(tf.truncated_normal(
        [num_hidden, num_labels], stddev=0.1))
    layer4_biases = tf.Variable(tf.constant(1.0, shape=[num_labels]))
  
    # Model.
    def model(data):
        # print(data.get_shape().as_list())
        # [64, 28, 28, 1]
        conv = tf.nn.conv2d(data, layer1_weights, [1, 2, 2, 1], padding='SAME')
        hidden = tf.nn.relu(conv + layer1_biases)
        # print(hidden.get_shape().as_list())
        # [64, 14, 14, 16]
        mpool = tf.nn.max_pool(hidden, [1, 2, 2, 1], [1, 1, 2, 1], padding='SAME')
        # print(mpool.get_shape().as_list())
        # [64, 7, 7, 16]
        conv = tf.nn.conv2d(mpool, layer2_weights, [1, 2, 2, 1], padding='SAME')
        hidden = tf.nn.relu(conv + layer2_biases)
        # print(hidden.get_shape().as_list())
        # [64, 4, 4, 16]
        mpool = tf.nn.max_pool(hidden, [1, 2, 2, 1], [1, 2, 1, 1], padding='SAME')
        shape = mpool.get_shape().as_list()
        # print(shape)
        # [64, 2, 2, 16]
        reshape = tf.reshape(mpool, [shape[0], shape[1] * shape[2] * shape[3]])
        # print(reshape.get_shape().as_list())
        # [64, 64]
        hidden = tf.nn.relu(tf.matmul(reshape, layer3_weights) + layer3_biases)
        return(tf.matmul(hidden, layer4_weights) + layer4_biases)
  
    # Training computation.
    logits = model(tf_train_dataset)
    loss = tf.reduce_mean(
      tf.nn.softmax_cross_entropy_with_logits(labels=tf_train_labels, logits=logits))
    
    # Optimizer.
    optimizer = tf.train.GradientDescentOptimizer(0.05).minimize(loss)
  
    # Predictions for the training, validation, and test data.
    train_prediction = tf.nn.softmax(logits)
    valid_prediction = tf.nn.softmax(model(tf_valid_dataset))
    test_prediction = tf.nn.softmax(model(tf_test_dataset))
    
In [10]:
    
num_steps = 5001
with tf.Session(graph=graph) as session:
    tf.global_variables_initializer().run()
    print('Initialized')
    for step in range(num_steps):
        offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
        batch_data = train_dataset[offset:(offset + batch_size), :, :, :]
        batch_labels = train_labels[offset:(offset + batch_size), :]
        feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels}
        _, l, predictions = session.run(
            [optimizer, loss, train_prediction], feed_dict=feed_dict)
        if (step % 500 == 0):
            print('Minibatch loss at step %d: %f' % (step, l))
            print('Minibatch accuracy: %.1f%%' % accuracy(predictions, batch_labels))
            print('Validation accuracy: %.1f%%' % accuracy(
                valid_prediction.eval(), valid_labels))
    
    print('Test accuracy: %.1f%%' % accuracy(test_prediction.eval(), test_labels))
    
    
We got slightly better results. Seems like two max pools after each convolution on such a small image size was excessive.
In [11]:
    
batch_size = 64
patch_size = 5
depth = 16
num_hidden = 64
graph = tf.Graph()
with graph.as_default():
    # Input data.
    tf_train_dataset = tf.placeholder(
      tf.float32, shape=(batch_size, image_size, image_size, num_channels))
    tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
    tf_valid_dataset = tf.constant(valid_dataset)
    tf_test_dataset = tf.constant(test_dataset)
  
    # Variables.
    # layerX_weights are the kernels of the convolution
    layer1_weights = tf.Variable(tf.truncated_normal(
        [patch_size, patch_size, num_channels, depth], stddev=0.1))
    layer1_biases = tf.Variable(tf.zeros([depth]))
    layer2_weights = tf.Variable(tf.truncated_normal(
        [patch_size, patch_size, depth, depth], stddev=0.1))
    layer2_biases = tf.Variable(tf.constant(1.0, shape=[depth]))
    # we need to change layer 3 size because of the addition of max_pool
    # 28//16 = 1 but we need 2 - hard code it for now!
    layer3_weights = tf.Variable(tf.truncated_normal(
        [round(image_size / 8) * round(image_size / 8) * depth, num_hidden], stddev=0.1))
    layer3_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden]))
    layer4_weights = tf.Variable(tf.truncated_normal(
        [num_hidden, num_labels], stddev=0.1))
    layer4_biases = tf.Variable(tf.constant(1.0, shape=[num_labels]))
  
    # Model.
    def model(data):
        # print(data.get_shape().as_list())
        # [64, 28, 28, 1]
        conv = tf.nn.conv2d(data, layer1_weights, [1, 2, 2, 1], padding='SAME')
        hidden = tf.nn.relu(conv + layer1_biases)
        # print(hidden.get_shape().as_list())
        # [64, 14, 14, 16]
        mpool = tf.nn.max_pool(hidden, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME')
        # print(mpool.get_shape().as_list())
        # [64, 7, 7, 16]
        conv = tf.nn.conv2d(mpool, layer2_weights, [1, 2, 2, 1], padding='SAME')
        hidden = tf.nn.relu(conv + layer2_biases)
        shape = hidden.get_shape().as_list()
        # print(shape)
        # [64, 4, 4, 16]
        reshape = tf.reshape(hidden, [shape[0], shape[1] * shape[2] * shape[3]])
        # print(reshape.get_shape().as_list())
        # [64, 256]
        hidden = tf.nn.relu(tf.matmul(reshape, layer3_weights) + layer3_biases)
        return(tf.matmul(hidden, layer4_weights) + layer4_biases)
  
    # Training computation.
    logits = model(tf_train_dataset)
    loss = tf.reduce_mean(
      tf.nn.softmax_cross_entropy_with_logits(labels=tf_train_labels, logits=logits))
    
    # Optimizer.
    optimizer = tf.train.GradientDescentOptimizer(0.05).minimize(loss)
  
    # Predictions for the training, validation, and test data.
    train_prediction = tf.nn.softmax(logits)
    valid_prediction = tf.nn.softmax(model(tf_valid_dataset))
    test_prediction = tf.nn.softmax(model(tf_test_dataset))
    
In [12]:
    
num_steps = 5001
with tf.Session(graph=graph) as session:
    tf.global_variables_initializer().run()
    print('Initialized')
    for step in range(num_steps):
        offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
        batch_data = train_dataset[offset:(offset + batch_size), :, :, :]
        batch_labels = train_labels[offset:(offset + batch_size), :]
        feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels}
        _, l, predictions = session.run(
            [optimizer, loss, train_prediction], feed_dict=feed_dict)
        if (step % 500 == 0):
            print('Minibatch loss at step %d: %f' % (step, l))
            print('Minibatch accuracy: %.1f%%' % accuracy(predictions, batch_labels))
            print('Validation accuracy: %.1f%%' % accuracy(
                valid_prediction.eval(), valid_labels))
    
    print('Test accuracy: %.1f%%' % accuracy(test_prediction.eval(), test_labels))
    
    
Looks like putting the max_pooling operations together offers almost, but not exactly the same, performance as doing them separately.
Try to get the best performance you can use a convolutional net. Look for example at the classic LeNet5 architecture, adding Dropout, and/or adding learning rate decay.
We use figure 2 from Gradient-Based Learning Applied to Document Recognition as a guide in creating the model infrastructure.
In [13]:
    
batch_size = 64
patch_size = 5
depth1 = 6
depth2 = 16
num_hidden1 = 120
num_hidden2 = 84
graph = tf.Graph()
with graph.as_default():
    # Input data.
    tf_train_dataset = tf.placeholder(
        tf.float32, shape=(batch_size, image_size, image_size, num_channels))
    tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
    tf_valid_dataset = tf.constant(valid_dataset)
    tf_test_dataset = tf.constant(test_dataset)
  
    # Variables.
    # C1 layer:
    layer1_weights = tf.Variable(tf.truncated_normal(
        [patch_size, patch_size, num_channels, depth1], stddev=0.1))
    layer1_biases = tf.Variable(tf.zeros([depth1]))
    # S2 avg_pool - no need to specify weights
    # C3 layer:
    layer2_weights = tf.Variable(tf.truncated_normal(
        [patch_size, patch_size, depth1, depth2], stddev=0.1))
    layer2_biases = tf.Variable(tf.constant(1.0, shape=[depth2]))
    # S4 avg_pool - no need to specify weights
    # C5 hidden1
    size = ((image_size - patch_size + 1) // 2 - patch_size + 1) // 2
    layer3_weights = tf.Variable(tf.truncated_normal(
        [size * size * depth2, num_hidden1], stddev=np.sqrt(2.0 / num_hidden1)))
    layer3_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden1]))
    # F6 hidden2
    layer4_weights = tf.Variable(tf.truncated_normal(
        [num_hidden1, num_hidden2], stddev=np.sqrt(2.0 / num_hidden2)))
    layer4_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden2]))
    # Output
    layer5_weights = tf.Variable(tf.truncated_normal(
        [num_hidden2, num_labels], stddev=0.1))
    layer5_biases = tf.Variable(tf.constant(1.0, shape=[num_labels]))
  
    # Model.
    def model(data):
        # C1 input 28 x 28
        conv = tf.nn.conv2d(data, layer1_weights, [1, 1, 1, 1], padding='VALID')
        layer = tf.nn.relu(conv + layer1_biases)
        # S2 input 24 x 24
        pool = tf.nn.max_pool(layer, [1, 2, 2, 1], [1, 2, 2, 1], padding='VALID')
        # C3 input 12 x 12
        conv = tf.nn.conv2d(pool, layer2_weights, [1, 1, 1, 1], padding='VALID')
        layer = tf.nn.relu(conv + layer2_biases)
        # S4 input 8 x 8
        pool = tf.nn.max_pool(layer, [1, 2, 2, 1], [1, 2, 2, 1], padding='VALID')
        # C5 input 4 x 4
        shape = pool.get_shape().as_list()
        reshape = tf.reshape(pool, [shape[0], shape[1] * shape[2] * shape[3]])
        hidden = tf.nn.relu(tf.matmul(reshape, layer3_weights) + layer3_biases)
        # F6
        hidden = tf.nn.relu(tf.matmul(hidden, layer4_weights) + layer4_biases)
        # return output logits
        return (tf.matmul(hidden, layer5_weights) + layer5_biases)
  
    # Training computation.
    logits = model(tf_train_dataset)
    loss = tf.reduce_mean(
        tf.nn.softmax_cross_entropy_with_logits(logits=logits,
                                                labels=tf_train_labels))
    # Optimizer - with variable learning rate.
    gstep = tf.Variable(0)  # steps taken
    ilrate = tf.placeholder(tf.float32)
    flrate = tf.train.exponential_decay(ilrate, gstep, 4000, 0.6)
    
    optimizer = tf.train.MomentumOptimizer(flrate, momentum=0.9, use_nesterov=True).minimize(
        loss, global_step=gstep)
    
    # # Optimizer.
    # optimizer = tf.train.GradientDescentOptimizer(0.005).minimize(loss)
    # Predictions for the training, validation, and test data.
    train_prediction = tf.nn.softmax(logits)
    valid_prediction = tf.nn.softmax(model(tf_valid_dataset))
    test_prediction = tf.nn.softmax(model(tf_test_dataset))
    
In [14]:
    
num_steps = 20001
# learning rate (initial)
learning_rate_i = 0.01
with tf.Session(graph=graph) as session:
    tf.global_variables_initializer().run()
    print('Initialized')
    for step in range(num_steps):
        offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
        batch_data = train_dataset[offset:(offset + batch_size), :, :, :]
        batch_labels = train_labels[offset:(offset + batch_size), :]
        feed_dict = {tf_train_dataset : batch_data,
                     tf_train_labels : batch_labels,
                     ilrate : learning_rate_i}
        _, l, predictions = session.run(
            [optimizer, loss, train_prediction], feed_dict=feed_dict)
        if (step % 1000 == 0):
            print('Minibatch loss at step %d: %f' % (step, l))
            print('Minibatch accuracy: %.1f%%' % accuracy(predictions, batch_labels))
            print('Validation accuracy: %.1f%%' % accuracy(
                valid_prediction.eval(), valid_labels))
            print("Current learning rate: {}".format(flrate.eval(feed_dict=feed_dict)))
    
    print('Test accuracy: %.1f%%' % accuracy(test_prediction.eval(), test_labels))
    
    
Even though this is not as accurate as we have gotten with 4 fully connected layers (97.4%) it is close (and we have not fully optimised it).
Let's try tweaking the LeNet-5 architecture:
In [15]:
    
batch_size = 128
patch_size = 5
depth1 = 10
depth2 = 30
num_hidden1 = 240
num_hidden2 = 160
graph = tf.Graph()
with graph.as_default():
    # Input data.
    tf_train_dataset = tf.placeholder(
        tf.float32, shape=(batch_size, image_size, image_size, num_channels))
    tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
    tf_valid_dataset = tf.constant(valid_dataset)
    tf_test_dataset = tf.constant(test_dataset)
  
    # Variables.
    # C1 layer:
    layer1_weights = tf.Variable(tf.truncated_normal(
        [patch_size, patch_size, num_channels, depth1], stddev=0.1))
    layer1_biases = tf.Variable(tf.zeros([depth1]))
    # S2 avg_pool - no need to specify weights
    # C3 layer:
    layer2_weights = tf.Variable(tf.truncated_normal(
        [patch_size, patch_size, depth1, depth2], stddev=0.1))
    layer2_biases = tf.Variable(tf.constant(1.0, shape=[depth2]))
    # S4 avg_pool - no need to specify weights
    # C5 hidden1
    size = ((image_size - patch_size + 1) // 2 - patch_size + 1) // 2
    layer3_weights = tf.Variable(tf.truncated_normal(
        [size * size * depth2, num_hidden1], stddev=np.sqrt(0.025 / num_hidden1)))
    layer3_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden1]))
    # F6 hidden2
    layer4_weights = tf.Variable(tf.truncated_normal(
        [num_hidden1, num_hidden2], stddev=np.sqrt(0.025 / num_hidden2)))
    layer4_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden2]))
    # Output
    layer5_weights = tf.Variable(tf.truncated_normal(
        [num_hidden2, num_labels], stddev=np.sqrt(0.025 / num_labels)))
    layer5_biases = tf.Variable(tf.constant(1.0, shape=[num_labels]))
  
    # Model.
    def model(data):
        # C1 input 28 x 28
        conv = tf.nn.conv2d(data, layer1_weights, [1, 1, 1, 1], padding='VALID')
        layer = tf.nn.relu(conv + layer1_biases)
        # S2 input 24 x 24
        pool = tf.nn.max_pool(layer, [1, 2, 2, 1], [1, 2, 2, 1], padding='VALID')
        # C3 input 12 x 12
        conv = tf.nn.conv2d(pool, layer2_weights, [1, 1, 1, 1], padding='VALID')
        layer = tf.nn.relu(conv + layer2_biases)
        # S4 input 8 x 8
        pool = tf.nn.max_pool(layer, [1, 2, 2, 1], [1, 2, 2, 1], padding='VALID')
        # C5 input 4 x 4
        shape = pool.get_shape().as_list()
        reshape = tf.reshape(pool, [shape[0], shape[1] * shape[2] * shape[3]])
        hidden = tf.nn.relu(tf.matmul(reshape, layer3_weights) + layer3_biases)
        # F6
        hidden = tf.nn.relu(tf.matmul(hidden, layer4_weights) + layer4_biases)
        # return output logits
        return (tf.matmul(hidden, layer5_weights) + layer5_biases)
  
    # Training computation.
    logits = model(tf_train_dataset)
    loss = tf.reduce_mean(
        tf.nn.softmax_cross_entropy_with_logits(logits=logits,
                                                labels=tf_train_labels))
    
    # Optimizer - with variable learning rate.
    gstep = tf.Variable(0)  # steps taken
    ilrate = tf.placeholder(tf.float32)
    flrate = tf.train.exponential_decay(ilrate, gstep, 8000, 0.5)
    
    optimizer = tf.train.MomentumOptimizer(flrate, momentum=0.9, use_nesterov=True).minimize(
        loss, global_step=gstep)
    
    # # Optimizer.
    # optimizer = tf.train.GradientDescentOptimizer(0.005).minimize(loss)
    # Predictions for the training, validation, and test data.
    train_prediction = tf.nn.softmax(logits)
    valid_prediction = tf.nn.softmax(model(tf_valid_dataset))
    test_prediction = tf.nn.softmax(model(tf_test_dataset))
    
In [16]:
    
num_steps = 20001
# learning rate (initial)
learning_rate_i = 0.01
with tf.Session(graph=graph) as session:
    tf.global_variables_initializer().run()
    print('Initialized')
    for step in range(num_steps):
        offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
        batch_data = train_dataset[offset:(offset + batch_size), :, :, :]
        batch_labels = train_labels[offset:(offset + batch_size), :]
        feed_dict = {tf_train_dataset : batch_data,
                     tf_train_labels : batch_labels,
                     ilrate : learning_rate_i}
        _, l, predictions = session.run(
            [optimizer, loss, train_prediction], feed_dict=feed_dict)
        if (step % 1000 == 0):
            print('Minibatch loss at step %d: %f' % (step, l))
            print('Minibatch accuracy: %.1f%%' % accuracy(predictions, batch_labels))
            print('Validation accuracy: %.1f%%' % accuracy(
                valid_prediction.eval(), valid_labels))
            print("Current learning rate: {}".format(flrate.eval(feed_dict=feed_dict)))
    
    print('Test accuracy: %.1f%%' % accuracy(test_prediction.eval(), test_labels))
    
    
In [17]:
    
batch_size = 128
patch_size = 5
depth1 = 10
depth2 = 30
num_hidden1 = 240
num_hidden2 = 160
graph = tf.Graph()
with graph.as_default():
    # Input data.
    tf_train_dataset = tf.placeholder(
        tf.float32, shape=(batch_size, image_size, image_size, num_channels))
    tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
    tf_valid_dataset = tf.constant(valid_dataset)
    tf_test_dataset = tf.constant(test_dataset)
  
    # Variables.
    # C1 layer:
    layer1_weights = tf.Variable(tf.truncated_normal(
        [patch_size, patch_size, num_channels, depth1], stddev=0.1))
    layer1_biases = tf.Variable(tf.zeros([depth1]))
    # S2 avg_pool - no need to specify weights
    # C3 layer:
    layer2_weights = tf.Variable(tf.truncated_normal(
        [patch_size, patch_size, depth1, depth2], stddev=0.1))
    layer2_biases = tf.Variable(tf.constant(1.0, shape=[depth2]))
    # S4 avg_pool - no need to specify weights
    # C5 hidden1
    size = ((image_size - patch_size + 1) // 2 - patch_size + 1) // 2
    layer3_weights = tf.Variable(tf.truncated_normal(
        [size * size * depth2, num_hidden1], stddev=np.sqrt(1 / num_hidden1)))
    layer3_biases = tf.Variable(tf.constant(0.01, shape=[num_hidden1]))
    # F6 hidden2
    layer4_weights = tf.Variable(tf.truncated_normal(
        [num_hidden1, num_hidden2], stddev=np.sqrt(1 / num_hidden2)))
    layer4_biases = tf.Variable(tf.constant(0.01, shape=[num_hidden2]))
    # Output
    layer5_weights = tf.Variable(tf.truncated_normal(
        [num_hidden2, num_labels], stddev=np.sqrt(1 / num_labels)))
    layer5_biases = tf.Variable(tf.constant(0.01, shape=[num_labels]))
  
    # Model.
    def model(data):
        # C1 input 28 x 28
        conv = tf.nn.conv2d(data, layer1_weights, [1, 1, 1, 1], padding='VALID')
        layer = tf.nn.relu(conv + layer1_biases)
        # S2 input 24 x 24
        pool = tf.nn.max_pool(layer, [1, 2, 2, 1], [1, 2, 2, 1], padding='VALID')
        # C3 input 12 x 12
        conv = tf.nn.conv2d(pool, layer2_weights, [1, 1, 1, 1], padding='VALID')
        layer = tf.nn.relu(conv + layer2_biases)
        # S4 input 8 x 8
        pool = tf.nn.max_pool(layer, [1, 2, 2, 1], [1, 2, 2, 1], padding='VALID')
        # C5 input 4 x 4
        shape = pool.get_shape().as_list()
        reshape = tf.reshape(pool, [shape[0], shape[1] * shape[2] * shape[3]])
        hidden = tf.nn.relu(tf.matmul(reshape, layer3_weights) + layer3_biases)
        # F6
        hidden = tf.nn.relu(tf.matmul(hidden, layer4_weights) + layer4_biases)
        # return output logits
        return (tf.matmul(hidden, layer5_weights) + layer5_biases)
  
    # Training computation.
    logits = model(tf_train_dataset)
    loss = tf.reduce_mean(
        tf.nn.softmax_cross_entropy_with_logits(logits=logits,
                                                labels=tf_train_labels))
        
    # add regularisation for all weights.
    regconst = tf.placeholder(tf.float32)
    loss = loss + regconst * (
    tf.nn.l2_loss(layer3_weights) + tf.nn.l2_loss(layer4_weights) + tf.nn.l2_loss(layer5_weights))
    
    # Optimizer - with variable learning rate.
    gstep = tf.Variable(0)  # steps taken
    ilrate = tf.placeholder(tf.float32)
    flrate = tf.train.exponential_decay(ilrate, gstep, 8000, 0.75)
    
    optimizer = tf.train.MomentumOptimizer(flrate, momentum=0.9, use_nesterov=True).minimize(
        loss, global_step=gstep)
    
    # # Optimizer.
    # optimizer = tf.train.GradientDescentOptimizer(0.005).minimize(loss)
    # Predictions for the training, validation, and test data.
    train_prediction = tf.nn.softmax(logits)
    valid_prediction = tf.nn.softmax(model(tf_valid_dataset))
    test_prediction = tf.nn.softmax(model(tf_test_dataset))
    
In [18]:
    
num_steps = 20001
# learning rate (initial)
learning_rate_i = 0.01
# regularisation constant
gamma = 0.00001
with tf.Session(graph=graph) as session:
    tf.global_variables_initializer().run()
    print('Initialized')
    for step in range(num_steps):
        offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
        batch_data = train_dataset[offset:(offset + batch_size), :, :, :]
        batch_labels = train_labels[offset:(offset + batch_size), :]
        feed_dict = {tf_train_dataset : batch_data,
                     tf_train_labels : batch_labels,
                     regconst : gamma,
                     ilrate : learning_rate_i}
        _, l, predictions = session.run(
            [optimizer, loss, train_prediction], feed_dict=feed_dict)
        if (step % 2000 == 0 or step in ([250, 500, 750, 1000])):
            print('Minibatch loss at step %d: %f' % (step, l))
            print('Minibatch accuracy: %.1f%%' % accuracy(predictions, batch_labels))
            print('Validation accuracy: %.1f%%' % accuracy(
                valid_prediction.eval(), valid_labels))
            print("Current learning rate: {}".format(flrate.eval(feed_dict=feed_dict)))
    
    print('Test accuracy: %.1f%%' % accuracy(test_prediction.eval(), test_labels))
    
    
Regularisation didn't significantly improve permormance. Let's try dropout.
In [19]:
    
batch_size = 128
patch_size = 5
depth1 = 10
depth2 = 30
num_hidden1 = 240
num_hidden2 = 160
graph = tf.Graph()
with graph.as_default():
    # Input data.
    tf_train_dataset = tf.placeholder(
        tf.float32, shape=(batch_size, image_size, image_size, num_channels))
    tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
    tf_valid_dataset = tf.constant(valid_dataset)
    tf_test_dataset = tf.constant(test_dataset)
  
    # Variables.
    # C1 layer:
    layer1_weights = tf.Variable(tf.truncated_normal(
        [patch_size, patch_size, num_channels, depth1], stddev=0.1))
    layer1_biases = tf.Variable(tf.zeros([depth1]))
    # S2 avg_pool - no need to specify weights
    # C3 layer:
    layer2_weights = tf.Variable(tf.truncated_normal(
        [patch_size, patch_size, depth1, depth2], stddev=0.1))
    layer2_biases = tf.Variable(tf.constant(1.0, shape=[depth2]))
    # S4 avg_pool - no need to specify weights
    # C5 hidden1
    size = ((image_size - patch_size + 1) // 2 - patch_size + 1) // 2
    layer3_weights = tf.Variable(tf.truncated_normal(
        [size * size * depth2, num_hidden1], stddev=np.sqrt(1 / num_hidden1)))
    layer3_biases = tf.Variable(tf.constant(0.01, shape=[num_hidden1]))
    # F6 hidden2
    layer4_weights = tf.Variable(tf.truncated_normal(
        [num_hidden1, num_hidden2], stddev=np.sqrt(1 / num_hidden2)))
    layer4_biases = tf.Variable(tf.constant(0.01, shape=[num_hidden2]))
    # Output
    layer5_weights = tf.Variable(tf.truncated_normal(
        [num_hidden2, num_labels], stddev=np.sqrt(1 / num_labels)))
    layer5_biases = tf.Variable(tf.constant(0.01, shape=[num_labels]))
    
    # introduce dropout
    keep_prob = tf.placeholder(tf.float32)
  
    # Model.
    def model(data):
        # C1 input 28 x 28
        conv = tf.nn.conv2d(data, layer1_weights, [1, 1, 1, 1], padding='VALID')
        layer = tf.nn.relu(conv + layer1_biases)
        # S2 input 24 x 24
        pool = tf.nn.max_pool(layer, [1, 2, 2, 1], [1, 2, 2, 1], padding='VALID')
        # C3 input 12 x 12
        conv = tf.nn.conv2d(pool, layer2_weights, [1, 1, 1, 1], padding='VALID')
        layer = tf.nn.relu(conv + layer2_biases)
        # S4 input 8 x 8
        pool = tf.nn.max_pool(layer, [1, 2, 2, 1], [1, 2, 2, 1], padding='VALID')
        # C5 input 4 x 4
        shape = pool.get_shape().as_list()
        reshape = tf.reshape(pool, [shape[0], shape[1] * shape[2] * shape[3]])
        hidden = tf.nn.relu(tf.matmul(reshape, layer3_weights) + layer3_biases)
        hidden_d = tf.nn.dropout(hidden, keep_prob)
        # F6
        hidden = tf.nn.relu(tf.matmul(hidden, layer4_weights) + layer4_biases)
        hidden2 = tf.nn.relu(tf.matmul(hidden_d, layer4_weights) + layer4_biases)
        hidden_d = tf.nn.dropout(hidden2, keep_prob)
        # return output logits
        output = (tf.matmul(hidden, layer5_weights) + layer5_biases)
        output_d = (tf.matmul(hidden_d, layer5_weights) + layer5_biases)
        # dropput passes through both fully connected layers.
        return ([output_d, output])
  
    # Training computation.
    logits = model(tf_train_dataset)[0]
    loss = tf.reduce_mean(
        tf.nn.softmax_cross_entropy_with_logits(logits=logits,
                                                labels=tf_train_labels))
        
    # add regularisation for all weights.
    regconst = tf.placeholder(tf.float32)
    loss = loss + regconst * (
        tf.nn.l2_loss(layer3_weights) + tf.nn.l2_loss(layer4_weights) + 
        tf.nn.l2_loss(layer5_weights))
    
    # Optimizer - with variable learning rate.
    gstep = tf.Variable(0)  # steps taken
    ilrate = tf.placeholder(tf.float32)
    flrate = tf.train.exponential_decay(ilrate, gstep, 8000, 0.75)
    
    optimizer = tf.train.MomentumOptimizer(flrate, momentum=0.9, use_nesterov=True).minimize(
        loss, global_step=gstep)
    
    # # Optimizer.
    # optimizer = tf.train.GradientDescentOptimizer(0.005).minimize(loss)
    # Predictions for the training, validation, and test data.
    train_prediction = tf.nn.softmax(model(tf_train_dataset)[1])
    valid_prediction = tf.nn.softmax(model(tf_valid_dataset)[1])
    test_prediction = tf.nn.softmax(model(tf_test_dataset)[1])
    
In [20]:
    
num_steps = 20001
# learning rate (initial)
learning_rate_i = 0.01
# regularisation constant
gamma = 1e-5
# dropout layer keep probability
keep_probl = 0.8 # cannot have the same name as graph variable!
with tf.Session(graph=graph) as session:
    tf.global_variables_initializer().run()
    print('Initialized')
    for step in range(num_steps):
        offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
        batch_data = train_dataset[offset:(offset + batch_size), :, :, :]
        batch_labels = train_labels[offset:(offset + batch_size), :]
        feed_dict = {tf_train_dataset : batch_data,
                     tf_train_labels : batch_labels,
                     regconst : gamma,
                     keep_prob : keep_probl,
                     ilrate : learning_rate_i}
        _, l, predictions = session.run(
            [optimizer, loss, train_prediction], feed_dict=feed_dict)
        if (step % 2000 == 0 or step in ([250, 500, 750, 1000])):
            print('Minibatch loss at step %d: %f' % (step, l))
            print('Minibatch accuracy: %.1f%%' % accuracy(predictions, batch_labels))
            print('Validation accuracy: %.1f%%' % accuracy(
                valid_prediction.eval(), valid_labels))
            print("Current learning rate: {}".format(flrate.eval(feed_dict=feed_dict)))
    
    print('Test accuracy: %.1f%%' % accuracy(test_prediction.eval(), test_labels))