Jacobiana

$$\frac{dx}{dt}=a_{1}x-b_{1}x^{2}+c_{1}xy$$$$\frac{dy}{dt}=a_{2}y-b_{2}y^{2}+c_{1}xy$$
$$\frac{dx}{dt}=(1-x-y)x$$$$\frac{dy}{dt}=(4-7x-3y)y$$

In [1]:
import numpy as np

# importamos bibliotecas para plotear
import matplotlib
import matplotlib.pyplot as plt

# para desplegar los plots en el notebook
%matplotlib inline

# para cómputo simbólico
from sympy import *
init_printing()

x, y = symbols('x y')

In [2]:
f = (1-x-y)*x
f


Out[2]:
$$x \left(- x - y + 1\right)$$

In [3]:
g = (4-7*x-3*y)*y
g


Out[3]:
$$y \left(- 7 x - 3 y + 4\right)$$

Equilibrios


In [4]:
solve(f, x)


Out[4]:
$$\left [ 0, \quad - y + 1\right ]$$

In [5]:
solve(g, y)


Out[5]:
$$\left [ 0, \quad - \frac{7 x}{3} + \frac{4}{3}\right ]$$

In [6]:
Y = solve(g, y)[1]
solve(f.subs(y, Y),x)


Out[6]:
$$\left [ 0, \quad \frac{1}{4}\right ]$$

In [7]:
solve(g.subs(x, -y + 1), y)


Out[7]:
$$\left [ 0, \quad \frac{3}{4}\right ]$$

Jacobiana


In [11]:
J = symbols("J")

J = Matrix([[diff(f, x), diff(f, y)], 
            [diff(g, x), diff(g, y)]])
J


Out[11]:
$$\left[\begin{matrix}- 2 x - y + 1 & - x\\- 7 y & - 7 x - 6 y + 4\end{matrix}\right]$$

Evaluada en un punto de equilibrio


In [15]:
J = J.subs({x: 1/4, y:3/4})
J


Out[15]:
$$\left[\begin{matrix}-0.25 & -0.25\\-5.25 & -2.25\end{matrix}\right]$$

In [16]:
J.det(), J.trace()


Out[16]:
$$\left ( -0.75, \quad -2.5\right )$$