In [874]:
%matplotlib inline
import pandas as pd
import numpy as np

In [875]:
raw_df = pd.DataFrame.from_csv('31461-0002-Data.tsv',sep='\t', index_col=None)
# raw_df = raw_df[raw_df['seltrans'] == '1']
# raw_df = raw_df[raw_df['seltrans'] == '1']
# raw_df[['country','year','sa2']]
print raw_df.country.unique()
print raw_df.columns


['Afghanistan' 'Albania' 'Algeria' 'Angola' 'Argentina' 'Armenia'
 'Australia' 'Austria' 'Azerbaijan' 'Bahamas' 'Bahrain' 'Bangladesh'
 'Barbados' 'Belarus' 'Belgium' 'Belize' 'Benin' 'Bolivia' 'Bosnia-Herz'
 'Botswana' 'Brazil' 'Bulgaria' 'Burkina Faso' 'Burundi' 'C. Verde Is.'
 'Cambodia' 'Cameroon' 'Canada' 'Cent. Af. Rep.' 'Chad' 'Chile' 'Colombia'
 'Comoro Is.' 'Congo' 'Costa Rica' "Cote d'Ivoire" 'Croatia' 'Cuba'
 'Cyprus' 'Czech Rep.' 'Denmark' 'Djibouti' 'Dom. Rep.' 'Ecuador' 'Egypt'
 'El Salvador' 'Eq. Guinea' 'Estonia' 'Ethiopia' 'FRG/Germany' 'Fiji'
 'Finland' 'France' 'GDR' 'Gabon' 'Gambia' 'Georgia' 'Ghana' 'Greece'
 'Grenada' 'Guatemala' 'Guinea' 'Guinea-Bissau' 'Guyana' 'Haiti' 'Honduras'
 'Hungary' 'Iceland' 'India' 'Indonesia' 'Iran' 'Iraq' 'Ireland' 'Israel'
 'Italy' 'Jamaica' 'Japan' 'Jordan' 'Kazakhstan' 'Kenya' 'Kuwait'
 'Kyrgyzstan' 'Laos' 'Latvia' 'Lebanon' 'Lesotho' 'Liberia' 'Lithuania'
 'Luxembourg' 'Macedonia' 'Madagascar' 'Malawi' 'Malaysia' 'Maldives'
 'Mali' 'Malta' 'Mauritania' 'Mauritius' 'Mexico' 'Moldova' 'Mongolia'
 'Morocco' 'Mozambique' 'Myanmar' 'Namibia' 'Nepal' 'Netherlands'
 'New Zealand' 'Nicaragua' 'Niger' 'Nigeria' 'Norway' 'P. N. Guinea' 'PRK'
 'Pakistan' 'Panama' 'Paraguay' 'Peru' 'Philippines' 'Poland' 'Portugal'
 'ROK' 'Romania' 'Russia' 'Rwanda' 'S. Africa' 'Samoa' 'Senegal' 'Serbia'
 'Sierra Leone' 'Singapore' 'Slovakia' 'Slovenia' 'Solomon Is.' 'Somalia'
 'Soviet Union' 'Spain' 'Sri Lanka' 'St. Lucia' 'Sudan' 'Suriname'
 'Swaziland' 'Sweden' 'Switzerland' 'Syria' 'Taiwan' 'Tajikistan'
 'Tanzania' 'Thailand' 'Timor-Leste' 'Togo' 'Trinidad-Tobago' 'Tunisia'
 'Turk Cyprus' 'Turkey' 'Turkmenistan' 'UK' 'Uganda' 'Ukraine' 'Uruguay'
 'Uzbekistan' 'Vanuatu' 'Venezuela' 'Vietnam' 'W. Samoa' 'Yemen'
 'Yemen (AR)' 'Yemen (PDR)' 'Yugoslavia' 'Zaire (Democ Republic Congo)'
 'Zambia' 'Zimbabwe']
Index([u'newid', u'newid2', u'country', u'year', u'cow', u'dateleg',
       u'dateexec', u'legelec', u'exelec', u'seltrans', u'selrunoff', u'sp1',
       u'sp2', u'sobsdom', u'siemass', u'sf1', u'sf2', u'sf3', u'sa1', u'sa2',
       u'srec', u'sr0str', u'sr11cheat', u'sr13viol', u'sr12cap', u'sr21cheat',
       u'sr23viol', u'sr22cap', u'intercoder', u'rec_score', u'problems'],
      dtype='object')

In [885]:
import sys
seltrans_df = raw_df[['country','seltrans']]
seltrans_df = seltrans_df[seltrans_df.seltrans != ' ']
seltrans_df = seltrans_df[seltrans_df.seltrans == '1']
for c in seltrans_df.country.unique():
    sys.stdout.write(c+', ')


Algeria, Argentina, Belarus, Benin, Bolivia, Brazil, Burkina Faso, Cambodia, Cent. Af. Rep., Chad, Congo, Cote d'Ivoire, El Salvador, Estonia, Ethiopia, Gabon, Georgia, Ghana, Guatemala, Guinea-Bissau, Honduras, Hungary, Indonesia, Madagascar, Mali, Moldova, Mongolia, Mozambique, Namibia, Nepal, Nicaragua, Niger, Nigeria, Pakistan, Paraguay, Peru, Philippines, Poland, ROK, Romania, Slovenia, Sudan, Suriname, Taiwan, Tajikistan, Turkey, Uruguay, Zambia, Zimbabwe, 

In [872]:
field = 'sr22cap'
field2 = 'sa1'
sa2 = raw_df[['newid','year','country','cow',field,field2]]
sa2 = sa2[sa2.sr22cap != ' ']

In [873]:
# sa2 = sa2[sa2[field] != ' ']
sa2[field] = sa2[field].apply(lambda x:int(x))
# sa2 = sa2[sa2[field2] != ' ']
sa2[field] = sa2[field2].apply(lambda x:int(x))

sa2


Out[873]:
newid year country cow sr22cap sa1
1 31 2004 Afghanistan 700 0 0.0
4 48 1991 Albania 339 0 0.0
5 49 1992 Albania 339 0 0.0
6 53 1996 Albania 339 1 1.0
7 54 1997 Albania 339 0 0.0
8 58 2001 Albania 339 0 0.0
12 75 1988 Algeria 615 0 0.5
14 82 1995 Algeria 615 0 0.0
15 84 1997 Algeria 615 0 0.5
16 86 1999 Algeria 615 1 1.0
17 89 2002 Algeria 615 0 0.0
18 91 2004 Algeria 615 0 0.0
19 97 1980 Angola 540 1 1.0
21 109 1992 Angola 540 0 0.0
22 130 1983 Argentina 160 0 0.0
23 132 1985 Argentina 160 0 0.0
24 134 1987 Argentina 160 0 0.0
25 136 1989 Argentina 160 0 0.0
26 138 1991 Argentina 160 0 0.0
27 140 1993 Argentina 160 0 0.0
28 142 1995 Argentina 160 0 0.0
29 144 1997 Argentina 160 0 0.0
30 146 1999 Argentina 160 0 0.0
31 148 2001 Argentina 160 0 0.0
32 150 2003 Argentina 160 0 0.0
34 157 1995 Armenia 371 1 1.0
35 158 1996 Armenia 371 1 1.0
36 160 1998 Armenia 371 1 1.0
37 161 1999 Armenia 371 1 1.0
38 165 2003 Armenia 371 1 1.0
... ... ... ... ... ... ...
1163 4802 1998 Venezuela 101 0 0.0
1164 4803 1998 Venezuela 101 0 0.0
1165 4805 2000 Venezuela 101 0 0.0
1167 4822 1987 Vietnam 818 1 1.0
1168 4827 1992 Vietnam 818 1 1.0
1169 4832 1997 Vietnam 818 1 1.0
1170 4833 1997 Vietnam 818 1 1.0
1171 4838 2002 Vietnam 818 1 1.0
1172 4839 2002 Vietnam 818 1 1.0
1177 4858 1991 W. Samoa 989 0 0.0
1178 4863 1996 W. Samoa 989 0 0.0
1179 4868 1993 Yemen 679 0 0.0
1180 4872 1997 Yemen 679 0 0.5
1181 4878 2003 Yemen 679 0 0.0
1183 4898 1978 Yemen (PDR) 680 0 0.5
1187 4921 1986 Yugoslavia 345 1 1.0
1191 4937 1984 Zaire (Democ Republic Congo) 490 1 1.0
1192 4940 1987 Zaire (Democ Republic Congo) 490 1 1.0
1193 4961 1978 Zambia 551 1 1.0
1195 4971 1988 Zambia 551 1 1.0
1196 4974 1991 Zambia 551 0 0.0
1197 4979 1996 Zambia 551 0 0.5
1198 4984 2001 Zambia 551 0 0.5
1199 4993 1980 Zimbabwe 552 0 0.0
1200 4998 1985 Zimbabwe 552 0 0.0
1201 5003 1990 Zimbabwe 552 0 0.0
1202 5008 1995 Zimbabwe 552 1 1.0
1203 5009 1996 Zimbabwe 552 1 1.0
1204 5013 2000 Zimbabwe 552 1 1.0
1205 5015 2002 Zimbabwe 552 1 1.0

981 rows × 6 columns


In [1027]:
adf = sa2[sa2['country'] == "Burundi"]
# adf = adf[~adf['newid'].isin([3750])]

# adf = adf.pivot(index='year',columns='country', values='sr22cap')
adf


Out[1027]:
newid year country cow sr22cap sa1
163 689 1984 Burundi 516 1 1
164 698 1993 Burundi 516 0 0

In [866]:
adf.plot(ylim=[-1,5],xlim=[1994,2004],marker='o')


Out[866]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f619b577450>

In [340]:
countries_dict


Out[340]:
{'Afghanistan': {1988: '3', 2004: '2'},
 'Albania': {1982: '3',
  1987: '3',
  1991: '2',
  1992: '2',
  1996: '3',
  1997: '2',
  2001: '2'},
 'Algeria': {1982: '2',
  1984: '2',
  1987: '3',
  1988: '3',
  1991: '2',
  1995: '2',
  1997: '3',
  1999: '3',
  2002: '2',
  2004: '2'},
 'Angola': {1980: '3', 1986: '3', 1992: '2'},
 'Argentina': {1983: '1',
  1985: '1',
  1987: '0',
  1989: '0',
  1991: '1',
  1993: '1',
  1995: '0',
  1997: '0',
  1999: '0',
  2001: '1',
  2003: '1'},
 'Armenia': {1991: '0', 1995: '3', 1996: '2', 1998: '2', 1999: '2', 2003: '2'},
 'Australia': {1977: '0',
  1980: '0',
  1983: '0',
  1984: '0',
  1987: '0',
  1990: '0',
  1993: '0',
  1996: '0',
  1998: '0',
  2001: '0',
  2004: '0'},
 'Austria': {1979: '0',
  1980: '0',
  1983: '0',
  1986: '0',
  1990: '0',
  1991: '0',
  1992: '0',
  1994: '0',
  1995: '0',
  1998: '0',
  1999: '0',
  2002: '0',
  2004: '0'},
 'Azerbaijan': {1992: '2',
  1993: '3',
  1995: '3',
  1998: '2',
  2000: '3',
  2003: '3'},
 'Bahamas': {1982: '1', 1987: '2', 1992: '0', 1997: '0', 2002: '0'},
 'Bahrain': {2002: '2'},
 'Bangladesh': {1978: '1',
  1979: '1',
  1981: '1',
  1986: '2',
  1988: '3',
  1991: '1',
  1996: '2',
  2001: '2'},
 'Barbados': {1981: '0',
  1986: '0',
  1991: '0',
  1994: '0',
  1999: '0',
  2003: '0'},
 'Belarus': {1994: '1', 1995: '2', 2000: '2', 2001: '3', 2004: '3'},
 'Belgium': {1977: '0',
  1978: '0',
  1981: '0',
  1985: '0',
  1987: '0',
  1991: '0',
  1995: '0',
  1999: '0',
  2003: '0'},
 'Belize': {1984: '0', 1989: '0', 1993: '1', 1998: '0', 2003: '0'},
 'Benin': {1984: '2',
  1989: '3',
  1991: '0',
  1995: '1',
  1996: '0',
  1999: '0',
  2001: '1',
  2003: '0'},
 'Bolivia': {1978: '3',
  1979: '1',
  1980: '0',
  1985: '0',
  1989: '0',
  1993: '1',
  1997: '0',
  2002: '1'},
 'Bosnia-Herz': {1996: '3', 1997: '2', 1998: '2', 2000: '2', 2002: '1'},
 'Botswana': {1979: '0',
  1984: '1',
  1989: '0',
  1994: '0',
  1999: '1',
  2004: '1'},
 'Brazil': {1982: '1',
  1985: '0',
  1986: '0',
  1990: '0',
  1994: '1',
  1998: '0',
  2002: '1'},
 'Bulgaria': {1981: '2',
  1986: '3',
  1990: '2',
  1991: '1',
  1992: '1',
  1994: '1',
  1996: '1',
  1997: '1',
  2001: '1'},
 'Burkina Faso': {1991: '2', 1992: '1', 1997: '2', 1998: '2', 2002: '2'},
 'Burundi': {1982: '2', 1984: '2', 1993: ' '},
 'C. Verde Is.': {1985: '2', 1991: '0', 1995: '0', 1996: '0', 2001: '0'},
 'Cambodia': {1993: '2', 1998: '2', 2003: '2'},
 'Cameroon': {1980: '3',
  1983: '2',
  1984: '3',
  1988: '2',
  1992: '2',
  1997: '2',
  2002: '2',
  2004: '2'},
 'Canada': {1979: '0',
  1980: '0',
  1984: '0',
  1988: '0',
  1993: '0',
  1997: '0',
  2000: '0',
  2004: '0'},
 'Cent. Af. Rep.': {1986: '3',
  1987: '2',
  1992: '3',
  1993: '1',
  1998: '2',
  1999: '2'},
 'Chad': {1990: '2', 1996: '2', 1997: '2', 2001: '3', 2002: '2'},
 'Chile': {1989: '1', 1993: '1', 1997: '1', 1999: '1', 2001: '1'},
 'Colombia': {1978: '1',
  1982: '1',
  1986: '1',
  1990: '2',
  1991: '2',
  1994: '2',
  1998: '2',
  2002: '2'},
 'Comoro Is.': {1978: '3',
  1984: '2',
  1987: '3',
  1990: '1',
  1992: '1',
  1993: '1',
  1996: '1',
  2002: '0',
  2004: '1'},
 'Congo': {1979: '3', 1984: '3', 1989: '3', 1992: '1', 1993: '2', 2002: '2'},
 'Costa Rica': {1978: '0',
  1982: '1',
  1986: '0',
  1990: '0',
  1994: '0',
  1998: '0',
  2002: '0'},
 "Cote d'Ivoire": {1990: '2', 1995: '2', 2000: '3'},
 'Croatia': {1992: '2', 1993: '2', 1995: '2', 1997: '3', 2000: '1', 2003: '1'},
 'Cuba': {1981: '3', 1986: '3', 1993: '3', 1998: '3', 2003: '3'},
 'Cyprus': {1981: '1',
  1983: '0',
  1985: '0',
  1988: '0',
  1991: '0',
  1993: '0',
  1996: '1',
  1998: '0',
  2001: '1',
  2003: '0'},
 'Czech Rep.': {1981: '2',
  1986: '3',
  1990: '0',
  1992: '0',
  1996: '1',
  1998: '1',
  2000: '0',
  2002: '0',
  2004: '0'},
 'Denmark': {1977: '0',
  1979: '0',
  1981: '0',
  1984: '0',
  1987: '0',
  1988: '0',
  1990: '0',
  1994: '0',
  1998: '0',
  2001: '0'},
 'Djibouti': {1981: '2',
  1982: '3',
  1987: '3',
  1992: '3',
  1993: '3',
  1997: '2',
  1999: '2',
  2003: '2'},
 'Dom. Rep.': {1978: '2',
  1982: '1',
  1986: '0',
  1990: '2',
  1994: '2',
  1996: '1',
  1998: '1',
  2000: '1',
  2002: '1',
  2004: '1'},
 'Ecuador': {1979: '0',
  1984: '2',
  1986: '1',
  1988: '0',
  1990: '0',
  1992: '1',
  1994: '0',
  1996: '0',
  1998: '1',
  2002: '0'},
 'Egypt': {1979: '2',
  1981: '2',
  1984: '1',
  1987: '2',
  1990: '2',
  1993: '3',
  1995: '2',
  2000: '3'},
 'El Salvador': {1977: '3',
  1978: '3',
  1982: '2',
  1984: '2',
  1985: '2',
  1988: '2',
  1989: '2',
  1991: '2',
  1994: '2',
  1997: '0',
  1999: '0',
  2000: '0',
  2003: '1',
  2004: '0'},
 'Eq. Guinea': {1988: '2',
  1989: '2',
  1993: '3',
  1996: '3',
  1999: '2',
  2002: '3',
  2004: '3'},
 'Estonia': {1992: '1',
  1995: '0',
  1996: '0',
  1997: '0',
  1999: '0',
  2001: '0',
  2003: '0'},
 'Ethiopia': {1992: '3', 1994: '2', 1995: '2', 2000: '3'},
 'FRG/Germany': {1980: '0',
  1983: '0',
  1987: '0',
  1990: '0',
  1994: '0',
  1998: '0',
  2002: '0'},
 'Fiji': {1982: '1', 1987: '1', 1992: '2', 1994: '1', 1999: '1', 2001: '2'},
 'Finland': {1978: '0',
  1979: '0',
  1982: '0',
  1983: '0',
  1987: '0',
  1988: '0',
  1991: '0',
  1994: '0',
  1995: '0',
  1999: '0',
  2000: '0',
  2003: '0'},
 'France': {1978: '0',
  1981: '0',
  1986: '0',
  1988: '0',
  1993: '0',
  1995: '0',
  1997: '0',
  2002: '0'},
 'GDR': {1981: '3', 1986: '3', 1990: '0'},
 'Gabon': {1979: '2',
  1980: '3',
  1985: '2',
  1986: '2',
  1990: '2',
  1993: '2',
  1996: '2',
  1998: '2',
  2001: '2'},
 'Gambia': {1977: '0',
  1982: '1',
  1987: '1',
  1992: '0',
  1996: '2',
  1997: '2',
  2001: '2',
  2002: '1'},
 'Georgia': {1992: '2', 1995: '2', 1999: '2', 2000: '3', 2003: '3', 2004: '2'},
 'Ghana': {1979: '0', 1992: '2', 1996: '0', 2000: '1', 2004: '2'},
 'Greece': {1977: '2',
  1981: '0',
  1985: '0',
  1989: '0',
  1990: '0',
  1993: '1',
  1996: '1',
  2000: '1',
  2004: '0'},
 'Grenada': {1984: '1', 1990: '0', 1995: '0', 1999: '0', 2003: '0'},
 'Guatemala': {1978: '2',
  1982: '2',
  1985: '1',
  1990: '2',
  1994: '2',
  1995: '2',
  1999: '1',
  2003: '2'},
 'Guinea': {1980: '3',
  1982: '3',
  1993: '3',
  1995: '2',
  1998: '3',
  2002: '2',
  2003: '2'},
 'Guinea-Bissau': {1984: '2', 1989: '3', 1994: '1', 1999: '2', 2004: '0'},
 'Guyana': {1980: '2', 1985: '2', 1992: '0', 1997: '1', 2001: '1'},
 'Haiti': {1979: '3',
  1984: '2',
  1988: '3',
  1990: '2',
  1995: '3',
  1997: '2',
  2000: '3'},
 'Honduras': {1980: '1',
  1981: '0',
  1985: '1',
  1989: '2',
  1993: '1',
  1997: '0',
  2001: '1'},
 'Hungary': {1980: '2', 1985: '2', 1990: '0', 1994: '0', 1998: '1', 2002: '0'},
 'Iceland': {1978: '0',
  1979: '0',
  1980: '0',
  1983: '0',
  1987: '0',
  1988: '0',
  1991: '0',
  1995: '0',
  1996: '0',
  1999: '0',
  2003: '0',
  2004: '0'},
 'India': {1977: '1',
  1980: '0',
  1984: '1',
  1989: '1',
  1991: '3',
  1996: '1',
  1998: '2',
  1999: '2',
  2004: '2'},
 'Indonesia': {1977: '1',
  1982: '2',
  1987: '3',
  1992: '2',
  1997: '3',
  1998: '3',
  1999: '2',
  2004: '1'},
 'Iran': {1984: '3',
  1988: '3',
  1989: '2',
  1992: '2',
  1993: '3',
  1996: '3',
  1997: '2',
  2000: '2',
  2001: '3',
  2004: ' '},
 'Iraq': {1984: '3', 1989: '3', 1996: '3', 2000: '3'},
 'Ireland': {1977: '0',
  1981: '0',
  1982: '0',
  1983: '0',
  1987: '1',
  1989: '0',
  1990: '0',
  1992: '0',
  1993: '0',
  1997: '0',
  2002: '0'},
 'Israel': {1977: '0',
  1981: '1',
  1984: '1',
  1988: '1',
  1992: '2',
  1996: '1',
  1999: '1',
  2001: '1',
  2003: '2'},
 'Italy': {1979: '0',
  1983: '0',
  1987: '0',
  1992: '0',
  1994: '0',
  1996: '0',
  2001: '0'},
 'Jamaica': {1980: '2', 1983: '2', 1989: '1', 1993: '3', 1997: '2', 2002: '2'},
 'Japan': {1979: '0',
  1980: '0',
  1983: '0',
  1986: '0',
  1989: '0',
  1990: '0',
  1992: '0',
  1993: '0',
  1995: '0',
  1996: '0',
  1998: '0',
  2000: '0',
  2001: '0',
  2003: '0',
  2004: '0'},
 'Jordan': {1989: '2', 1993: '2', 1997: '2', 2003: '2'},
 'Kazakhstan': {1994: '3', 1995: '2', 1999: '3', 2004: '3'},
 'Kenya': {1979: '2', 1983: '2', 1988: '3', 1992: '3', 1997: '2', 2002: '2'},
 'Kuwait': {1981: '2', 1985: '2', 1992: '2', 1996: '2', 1999: '2', 2003: '2'},
 'Kyrgyzstan': {1995: '2', 2000: '3'},
 'Laos': {1989: '3', 1992: '3', 1997: '2', 2002: '3'},
 'Latvia': {1993: '1', 1995: '1', 1998: '0', 2002: '0'},
 'Lebanon': {1992: '2', 1996: '3', 2000: '2', 2002: '2'},
 'Lesotho': {1993: '0', 1998: '1', 2002: '0'},
 'Liberia': {1985: '3', 1997: '2'},
 'Lithuania': {1992: '0',
  1993: '0',
  1996: '0',
  1997: '0',
  2000: '0',
  2002: '0',
  2004: '1'},
 'Luxembourg': {1979: '0',
  1984: '0',
  1989: '0',
  1994: '0',
  1999: '0',
  2004: '0'},
 'Macedonia': {1994: '2', 1998: '1', 1999: '2', 2002: '1', 2004: '1'},
 'Madagascar': {1982: '2',
  1983: '2',
  1989: '3',
  1992: '2',
  1993: '1',
  1996: '0',
  1998: '1',
  2001: '2',
  2002: '2'},
 'Malawi': {1978: '3',
  1983: '3',
  1987: '2',
  1992: '3',
  1994: '1',
  1999: '1',
  2004: '2'},
 'Malaysia': {1978: '1',
  1982: '2',
  1986: '1',
  1990: '1',
  1995: '2',
  1999: '2',
  2004: '2'},
 'Maldives': {1983: '2',
  1984: '1',
  1988: '2',
  1989: '2',
  1993: '2',
  1994: '2',
  1998: '2',
  1999: '2'},
 'Mali': {1979: '2',
  1982: '2',
  1985: '3',
  1988: '3',
  1992: '1',
  1997: '1',
  2002: '1'},
 'Malta': {1981: '1', 1987: '1', 1992: '0', 1996: '0', 1998: '0', 2003: '0'},
 'Mauritania': {1992: '3', 1996: '3', 1997: '2', 2001: '2', 2003: '2'},
 'Mauritius': {1982: '0',
  1983: '0',
  1987: '0',
  1991: '0',
  1995: '0',
  2000: '0'},
 'Mexico': {1979: '1',
  1982: '1',
  1985: '2',
  1988: '2',
  1991: '2',
  1994: '2',
  1997: '1',
  2000: '1',
  2003: '0'},
 'Moldova': {1994: '1', 1996: '1', 1998: '2', 2001: '1'},
 'Mongolia': {1981: '2',
  1986: '3',
  1990: '2',
  1992: '1',
  1993: '0',
  1996: '0',
  1997: '0',
  2000: '1',
  2001: '0',
  2004: '2'},
 'Morocco': {1977: '1', 1984: '2', 1993: '2', 1997: '3', 2002: '2'},
 'Mozambique': {1977: '3', 1986: '3', 1994: '2', 1999: '1', 2004: '2'},
 'Myanmar': {1981: '3'},
 'Namibia': {1989: '1', 1994: '0', 1999: '2', 2004: '1'},
 'Nepal': {1981: '2', 1986: '2', 1991: '1', 1994: '1', 1999: '2'},
 'Netherlands': {1977: '0',
  1980: '0',
  1981: '0',
  1982: '0',
  1986: '0',
  1989: '0',
  1994: '0',
  1995: '0',
  1998: '0',
  1999: '0',
  2002: '0',
  2003: '0'},
 'New Zealand': {1978: '0',
  1981: '0',
  1984: '0',
  1987: '0',
  1990: '1',
  1993: '0',
  1996: '0',
  1999: '0',
  2002: '0'},
 'Nicaragua': {1984: '3', 1990: '2', 1996: '1', 2001: '1'},
 'Niger': {1989: '2', 1993: '1', 1995: '1', 1996: '3', 1999: '2', 2004: '1'},
 'Nigeria': {1979: '0',
  1983: '3',
  1992: '3',
  1993: '3',
  1998: '3',
  1999: '2',
  2003: '3'},
 'Norway': {1977: '0',
  1981: '0',
  1985: '0',
  1989: '0',
  1993: '0',
  1997: '0',
  2001: '0'},
 'P. N. Guinea': {1982: '0', 1987: '0', 1992: '1', 1997: '1', 2002: '2'},
 'PRK': {1982: '3', 1986: '3', 1990: '3', 1998: '3', 2003: '3'},
 'Pakistan': {1977: '2',
  1985: '1',
  1988: '2',
  1990: '1',
  1991: '1',
  1993: '2',
  1997: '1',
  2002: '2'},
 'Panama': {1978: '2',
  1984: '3',
  1989: '3',
  1991: '0',
  1994: '0',
  1999: '1',
  2004: '1'},
 'Paraguay': {1978: '3',
  1983: '3',
  1988: '3',
  1989: '2',
  1993: '2',
  1998: '1',
  2000: '1',
  2003: '1'},
 'Peru': {1978: '1',
  1980: '1',
  1985: '0',
  1990: '2',
  1992: '2',
  1995: '2',
  2000: '3',
  2001: '1'},
 'Philippines': {1978: '3',
  1981: '2',
  1984: '2',
  1986: '3',
  1987: '2',
  1992: '2',
  1995: '2',
  1998: '2',
  2001: '2',
  2004: '2'},
 'Poland': {1980: '3',
  1985: '2',
  1989: '2',
  1990: '0',
  1991: '0',
  1993: '0',
  1995: '0',
  1997: '0',
  2000: '0',
  2001: '0'},
 'Portugal': {1979: '0',
  1980: '0',
  1983: '0',
  1985: '0',
  1986: '0',
  1987: '0',
  1991: '0',
  1995: '0',
  1996: '0',
  1999: '0',
  2001: '0',
  2002: '0'},
 'ROK': {1981: '2',
  1985: '2',
  1987: '2',
  1988: '1',
  1992: '1',
  1996: '1',
  1997: '0',
  2000: '0',
  2002: '0',
  2004: '0'},
 'Romania': {1980: '2',
  1985: '3',
  1990: '2',
  1992: '1',
  1996: '0',
  2000: '0',
  2004: '2'},
 'Russia': {1993: '2',
  1995: '1',
  1996: '2',
  1999: '2',
  2000: '2',
  2003: '2',
  2004: '2'},
 'Rwanda': {1978: '1', 1981: '2', 1983: '3', 1988: '2', 2003: '3'},
 'S. Africa': {1981: '3',
  1984: '3',
  1987: '3',
  1989: '3',
  1994: '1',
  1999: '1',
  2004: '1'},
 'Samoa': {2001: '1'},
 'Senegal': {1978: '1',
  1983: '1',
  1988: '2',
  1993: '2',
  1998: '2',
  2000: '1',
  2001: '1'},
 'Serbia': {1992: '3',
  1996: '2',
  1997: '3',
  1998: '2',
  2000: '2',
  2001: '2',
  2002: '1',
  2003: '1',
  2004: '1'},
 'Sierra Leone': {1977: '2',
  1982: '3',
  1985: '3',
  1986: '2',
  1996: '1',
  2002: '2'},
 'Singapore': {1980: '2',
  1984: '2',
  1988: '2',
  1991: '2',
  1993: '2',
  1997: '2',
  1999: '2',
  2001: '2'},
 'Slovakia': {1994: '0', 1998: '2', 1999: '0', 2002: '1', 2004: '0'},
 'Slovenia': {1992: '1',
  1996: '0',
  1997: '0',
  2000: '0',
  2002: '0',
  2004: '0'},
 'Solomon Is.': {1980: '0',
  1984: '0',
  1989: '0',
  1993: '0',
  1997: '0',
  2001: '0'},
 'Somalia': {1979: '2', 1984: '3', 1986: '3'},
 'Soviet Union': {1979: '3', 1984: '3', 1989: '3'},
 'Spain': {1977: '1',
  1979: '0',
  1982: '0',
  1986: '0',
  1989: '0',
  1993: '0',
  1996: '0',
  2000: '1',
  2004: '1'},
 'Sri Lanka': {1977: '0',
  1982: '2',
  1988: '2',
  1989: '2',
  1994: '2',
  1999: '2',
  2000: '2',
  2001: '2',
  2004: '2'},
 'St. Lucia': {1982: '1', 1987: '0', 1992: '0', 1997: '0', 2001: '0'},
 'Sudan': {1977: '2',
  1978: '2',
  1980: '2',
  1981: '2',
  1982: '2',
  1983: '3',
  1986: '2',
  1996: '3',
  2000: '3'},
 'Suriname': {1987: '1', 1991: '2', 1996: '1', 2000: '0'},
 'Swaziland': {1978: '1',
  1983: '2',
  1987: '2',
  1993: '2',
  1998: '2',
  2003: '2'},
 'Sweden': {1979: '0',
  1982: '0',
  1985: '0',
  1988: '0',
  1991: '0',
  1994: '0',
  1998: '0',
  2002: '0'},
 'Switzerland': {1979: '0',
  1983: '0',
  1987: '0',
  1991: '0',
  1995: '0',
  1999: '0',
  2003: '0'},
 'Syria': {1977: '2',
  1978: '1',
  1981: '3',
  1985: '3',
  1986: '3',
  1990: '3',
  1991: '3',
  1994: '3',
  1998: '3',
  2000: '3',
  2003: '2'},
 'Taiwan': {1980: '3',
  1983: '2',
  1986: '2',
  1989: '2',
  1991: '2',
  1995: '1',
  1996: '1',
  1998: '1',
  2000: '1',
  2001: '0',
  2004: '2'},
 'Tajikistan': {1994: '3', 1995: '3', 1999: '3', 2000: '3'},
 'Tanzania': {1980: '2', 1985: '3', 1990: '3', 1995: '2', 2000: '1'},
 'Thailand': {1979: '1',
  1983: '1',
  1986: '2',
  1988: '1',
  1992: '2',
  1995: '0',
  1996: '2',
  2000: '1',
  2001: '2'},
 'Timor-Leste': {2001: '0', 2002: '0'},
 'Togo': {1979: '2',
  1985: '2',
  1986: '3',
  1990: '2',
  1993: '3',
  1994: '2',
  1998: '3',
  1999: '3',
  2002: '2',
  2003: '3'},
 'Trinidad-Tobago': {1981: '0',
  1986: '0',
  1991: '0',
  1995: '0',
  2000: '0',
  2001: '1',
  2002: '0'},
 'Tunisia': {1981: '2', 1986: '3', 1989: '2', 1994: '2', 1999: '2', 2004: '2'},
 'Turk Cyprus': {1985: '0',
  1990: '0',
  1993: '0',
  1995: '1',
  1998: '0',
  2000: '1',
  2001: '0',
  2003: '1'},
 'Turkey': {1977: '0',
  1979: '1',
  1983: '2',
  1987: '0',
  1991: '1',
  1995: '2',
  1999: '2',
  2002: '2'},
 'Turkmenistan': {1992: '3', 1994: '3', 1999: '3'},
 'UK': {1979: '0', 1983: '0', 1987: '1', 1992: '0', 1997: '1', 2001: '0'},
 'Uganda': {1980: '1', 1989: '3', 1992: '3', 1996: '2', 2001: '3'},
 'Ukraine': {1994: '1', 1998: '2', 1999: '2', 2002: '2', 2004: '2'},
 'Uruguay': {1984: '1', 1989: '0', 1994: '0', 1999: '0', 2004: '0'},
 'Uzbekistan': {1994: '2', 1999: '3', 2000: '3', 2004: '3'},
 'Vanuatu': {1983: '0', 1987: '1', 1991: '1', 1995: '1', 1998: '0', 2002: '0'},
 'Venezuela': {1978: '0',
  1983: '1',
  1988: '0',
  1993: '2',
  1998: '1',
  2000: '2'},
 'Vietnam': {1981: '3', 1987: '2', 1992: '2', 1997: '2', 2002: '3'},
 'W. Samoa': {1979: '1',
  1982: '1',
  1985: '1',
  1988: '1',
  1991: '1',
  1996: '2'},
 'Yemen': {1993: '1', 1997: '1', 2003: '2'},
 'Yemen (AR)': {1988: '2'},
 'Yemen (PDR)': {1978: '3', 1986: '3'},
 'Yugoslavia': {1978: '2', 1982: '2', 1986: '2'},
 'Zaire (Democ Republic Congo)': {1977: '2', 1982: '3', 1984: '3', 1987: '2'},
 'Zambia': {1978: '3', 1983: '3', 1988: '2', 1991: '1', 1996: '2', 2001: '2'},
 'Zimbabwe': {1980: '1',
  1985: '1',
  1990: '2',
  1995: '3',
  1996: '2',
  2000: '3',
  2002: '3'}}

In [280]:
map(lambda x: x, countries_dict)
map(lambda x: countries_dict[x], countries_dict)
countries_dict['Canada']


Out[280]:
{1979: ' ',
 1980: '0',
 1984: '0',
 1988: ' ',
 1993: '0',
 1997: '0',
 2000: '0',
 2004: '0'}

In [68]:
pd.date_range('1978', '2002', freq='365D\')


Out[68]:
DatetimeIndex(['1978-01-01', '1979-01-01', '1980-01-01', '1980-12-31',
               '1981-12-31', '1982-12-31', '1983-12-31', '1984-12-30',
               '1985-12-30', '1986-12-30', '1987-12-30', '1988-12-29',
               '1989-12-29', '1990-12-29', '1991-12-29', '1992-12-28',
               '1993-12-28', '1994-12-28', '1995-12-28', '1996-12-27',
               '1997-12-27', '1998-12-27', '1999-12-27', '2000-12-26',
               '2001-12-26'],
              dtype='datetime64[ns]', freq='365D')

In [288]:
itu_mobile = pd.DataFrame.from_csv('Mobile_cellular_2000-2014.csv')
itu_mobile = itu_mobile[['2000','2001','2002','2003','2004','2005','2006','2007',
                         '2008','2009','2010','2011','2012','2013','2014']]

In [293]:
itu_mobile


Out[293]:
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
Afghanistan 0 0 25,000 200,000 600,000 1,200,000 2,520,366 4,668,096 7,898,909 10,500,000 13,000,000 17,558,265 19,520,813 21,588,228 23,423,741
Albania 29,791 392,650 851,000 1,100,000 1,259,590 1,530,244 1,909,885 2,322,436 1,859,632 2,463,741 2,692,372 3,100,000 3,500,000 3,685,983 3,359,654
Algeria 86,000 100,000 450,244 1,446,927 4,882,414 13,661,355 20,997,954 27,562,721 27,031,472 32,729,824 32,780,165 35,615,926 37,527,703 39,517,045 37,258,000
American Samoa 1,992 2,156 2,036 2,100 2,250 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
Andorra 23,543 29,429 32,790 51,893 58,366 64,560 69,004 63,503 64,202 64,549 65,495 65,044 63,865 63,931 66,241
Angola 25,806 75,000 140,000 350,000 740,000 1,611,118 3,054,620 4,961,536 6,773,356 8,109,421 9,403,365 12,073,218 12,785,109 13,285,198 14,052,558
Anguilla 2,163 1,773 3,042 4,427 7,229 13,061 17,150 23,526 26,484 24,820 25,695 26,019 26,100 26,000 26,000
Antigua & Barbuda 22,000 25,000 38,205 46,100 54,000 86,000 110,177 112,381 136,592 134,925 167,970 176,008 127,381 114,358 109,100
Argentina 6,487,950 6,741,791 6,566,740 7,842,233 13,512,383 22,156,426 31,510,390 40,401,771 46,508,774 52,482,780 57,082,298 60,722,729 64,327,647 67,361,515 66,356,509
Armenia 17,486 25,504 71,349 114,379 203,309 318,044 1,259,762 1,876,411 1,442,000 2,191,500 3,865,354 3211215 3322837 3346275 3459137
Aruba 15,000 53,000 61,800 69,952 98,389 103,417 109,030 113,586 120,806 128,000 131,800 NaN 135,000 138,800 139,700
Ascension 0 0 NaN 0 0 0 0 0 0 0 0 0 0 NaN 0
Australia 8,562,000 11,132,000 12,670,000 14,347,000 16,480,000 18,420,000 19,760,000 21,260,000 22,120,000 22,200,000 22,500,000 23,789,000 24,338,000 24,940,000 31,010,000
Austria 6,117,000 6,541,000 6,736,000 7,274,000 7,992,000 8,665,000 9,281,000 9,912,000 10,816,000 11,434,000 12,241,000 13,022,578 13,588,000 13,272,000 12,952,605
Azerbaijan 420,400 730,000 794,200 1,057,100 1,456,523 2,242,000 3,323,500 4,519,000 6,548,000 7,757,120 9,100,113 10,120,105 10,125,200 10,130,102 10,552,520
Bahamas 31,524 60,555 121,759 122,228 186,007 227,771 252,987 373,999 358,050 358,812 428,377 298,790 300,000 287,000 273,300
Bahrain 205,727 299,587 388,990 443,109 649,764 767,103 907,433 1,115,979 1,440,782 1,401,974 1,567,000 1,693,650 2,123,903 2,210,190 2,328,994
Bangladesh 279,000 520,000 1,075,000 1,365,000 2,781,560 9,000,000 19,130,983 34,370,000 44,640,000 51,359,315 67,923,887 84,368,700 97,180,000 116,553,076 120,350,497
Barbados 28,467 53,111 97,193 140,000 200,138 206,190 237,119 257,596 288,662 337,061 350,061 347,917 349,296 307,708 305,456
Belarus 49,353 138,329 462,630 1,118,000 2,239,287 4,099,500 5,960,000 6,960,000 8,128,000 9,686,200 10,332,900 10,694,900 10,676,471 11,114,440 11,401,927
Belgium 5,629,000 7,697,000 8,101,777 8,605,834 9,131,705 9,604,695 9,847,375 10,738,121 11,341,704 11,775,240 12,154,041 12,495,934 12,313,375 12,315,217 12,734,724
Belize 16,812 39,155 51,729 60,403 75,000 96,000 118,000 118,314 160,032 161,783 194,201 222407 172423 174615 172300
Benin 55476 125000 218770 236,175 459,322 596,267 1,055,727 2,051,776 3,625,366 5,033,349 7,074,914 7,765,206 8,407,846 9,627,447 10,780,875
Bermuda 13,000 13,333 30,000 40,000 49,000 52,720 60,100 69,000 79,000 85,000 88,200 NaN 91,000 94,300 59,491
Bhutan 0 0 0 2,255 19,138 36,000 82,078 149,439 253,429 338,938 394,316 484,189 560,890 544,337 628,289
Bolivia 582,620 779,917 1,023,333 1,278,844 1,800,789 2,421,402 2,876,143 3,254,410 5,038,600 6,464,390 7,179,293 8,353,273 9,493,207 10,425,704 10,450,341
Bosnia and Herzegovina 93,386 444,711 748,780 1,074,790 1,407,441 1,594,367 1,887,820 2,450,425 3,179,036 3,257,239 3,110,233 3,171,283 3,357,541 3,488,319 3,491,188
Botswana 222190 332264 332,264 444978 522840 563782 823070 1,151,761 1,485,791 1,874,101 2,363,411 2900263 3081726 3246787 3410507
Brazil 23,188,171 28,745,769 34,880,964 46,373,266 65,605,000 86,210,336 99,918,621 120,980,103 150,641,403 169,385,584 196,929,978 234,357,507 248,323,703 271,099,799 280,728,796
British Virgin Islands NaN NaN 8,000 NaN NaN NaN NaN 20,700 23,000 47,031 47,524 46,597 48,703 53,406 48,430
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
Tajikistan 1,160 1,630 13,200 47,617 135,000 265,000 2,150,000 2,132,770 3,673,520 4,900,000 5,940,842 6,324,000 6,528,000 7,537,100 7,999,100
Tanzania 110518 275560 606,859 1,298,000 1,942,000 2964000 5609000 8252000 13006793 17469486 20983853 25666455 27219283 27442823 31862656
TFYR Macedonia 115748 223275 365346 776000 985600 1,131,006 1,263,841 1,794,433 1967531 1,943,216 2,153,425 2,213,223 2,235,460 2,237,250 2,300,305
Thailand 3,056,000 7,550,000 17,449,890 21,616,910 26,965,548 30,460,238 40,125,470 52,973,994 61,837,164 65,952,313 71,726,300 77,449,000 85,012,000 93,849,000 97,096,000
Timor-Leste NaN NaN NaN 20,058 25,722 33,072 49,100 78,215 125,002 350,891 473,020 614,151 621,000 650,000 676,900
Togo 50,000 95,000 165,138 243,613 332,565 433,635 708,000 1,190,319 1,549,542 2,187,334 2,602,283 2,695,335 3,312,239 4,262,993 4,822,900
Tokelau 0 0 NaN 0 0 0 NaN NaN NaN NaN NaN NaN NaN NaN NaN
Tonga 180 236 3,354 11,200 16,400 29,872 30,051 46,525 50,472 53,000 54,300 55,000 56,000 57,500 68,000
Trinidad & Tobago 161,860 256,106 262,772 336,352 651,189 924,100 1,518,800 1,509,800 1,806,120 1,846,345 1,894,240 1,826,200 1,883,683 1,943,873 1,980,566
Tunisia 119,165 389,208 574,334 1,917,530 3,735,695 5,680,726 7,339,047 7,842,619 8,602,164 9,797,026 11,114,206 12,387,656 12,843,889 12,712,365 14,283,633
Turkey 16133405 19572897 23,323,118 27,887,535 34,707,549 43,608,965 52,662,700 61,975,807 65,824,110 62,779,554 61,769,635 65321745 67680547 69661108 71888416
Turkmenistan 7,500 8,173 8,173 9,187 50,100 105,000 216,868 381,670 1,135,150 2,132,890 3,197,624 5,300,000 5,900,000 6,125,300 7,206,100
Turks & Caicos Is. NaN NaN 9,052 19,361 25,085 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
Tuvalu 0 0 0 0 500 1,300 1600 1800 NaN 1000 1600 2130 2800 3400 3800
Uganda 126913 283520 393310 776169 1165035 1315300 2008818 4195278 8554864 9383734 12828264 16696992 16356387 18068648 20365941
Ukraine 818,524 2,224,600 3,692,700 6,498,423 13,735,000 30,013,500 49,076,239 55,240,400 55,681,476 54,942,815 53,928,830 55,576,481 59,343,693 62,458,800 61,170,229
United Arab Emirates 1,428,115 1,909,303 2,428,071 2,972,331 3,683,117 4,534,143 5,519,293 7,731,508 9,357,735 10,671,878 10,926,019 11,727,401 13,775,252 16,063,547 16,819,024
United Kingdom 43,452,000 46,283,000 49,228,000 54,256,221 59,687,915 65,471,665 70,077,926 73,836,210 74,940,937 76,481,053 76,729,827 77,162,298 78,329,355 78,673,978 78,460,684
United States 109,478,031 128,500,000 141,800,000 160,637,000 184,819,000 203,700,000 229,600,000 249,300,000 261,300,000 274,283,000 285,118,000 297,404,000 304,838,000 310,698,000 317,443,800
Uruguay 410,787 519,991 513,528 497,530 599,768 1,154,923 2,330,011 3,004,323 3,507,816 4,111,560 4,437,158 4,757,425 4,995,459 5,267,947 5,497,094
Uzbekistan 53,128 128,012 186,900 320,815 544,100 720,000 2,530,365 5,691,458 12,375,274 16,417,914 20,952,000 25,441,789 20,274,090 21,500,000 21,639,200
Vanuatu 365 350 4,900 7,800 10,504 12,692 15,000 26,000 36,000 131,682 169,935 136,956 146,084 127,244 156,051
Vatican NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
Venezuela 5,447,172 6,472,584 6,541,894 7,015,121 8,420,980 12,495,721 18,789,466 23,820,133 27,414,377 28,123,570 27,880,132 28,781,999 30,569,073 30,896,079 30,528,022
Viet Nam 788,559 1,251,195 1,902,388 2,742,000 4,960,000 9,593,200 18,892,480 45,024,048 74,872,310 98,223,980 111,570,201 127,318,045 131,673,724 123,735,557 136,148,124
Virgin Islands (US) 35,000 41,000 45,150 49,300 64,200 80,300 NaN NaN NaN NaN NaN NaN NaN NaN NaN
Wallis and Futuna 0 0 0 0 0 0 0 NaN NaN NaN NaN NaN NaN NaN 0
Yemen 32,042 147,837 486,667 675,162 1,476,000 2,277,559 2,977,781 4,349,000 6,445,000 8,313,000 11,085,000 11,668,000 13,900,000 16,844,700 17,100,000
Zambia 98,853 121,200 139,092 241,000 464,354 949,559 1,663,328 2,639,026 3,539,003 4,406,682 5,446,991 8,164,553 10,524,676 10,395,801 10,114,867
Zimbabwe 266,441 314,002 338,779 363,651 425,745 647,110 849,146 1,225,654 1,654,721 3,991,000 7,700,000 9,200,000 12,613,935 13,633,167 11,798,652

228 rows × 15 columns


In [290]:
m_stack = itu_mobile.stack()

In [ ]:


In [523]:
def get_country_series(country):
    c1 = m_stack[country]
    c1.index = c1.index.map(lambda x:int(x))
    c1 = c1.map(lambda x: int(x.replace(',','')))
    return c1
    
def plot_country(country):
    s = get_country_series(country)
    s.plot()

In [530]:
plot_country('Syria')



In [248]:
itu_tel = pd.DataFrame.from_csv('Fixed_tel_2000-2014.csv')
itu_tel = itu_tel[:228][['2000','2001','2002','2003','2004','2005','2006','2007',
                         '2008','2009','2010','2011','2012','2013','2014']]

In [250]:
t_stack = itu_tel.stack()
t_stack


Out[250]:
Afghanistan  2000     0.14
             2001     0.14
             2002     0.15
             2003     0.16
             2009     0.02
             2010     0.06
             2011     0.05
             2012     0.30
             2013     0.31
             2014     0.33
Albania      2000     4.62
             2001     6.01
             2002     6.74
             2003     7.87
             2004     8.54
             2005     8.73
             2006     8.05
             2007     9.48
             2008    10.88
             2009    11.52
             2010    10.57
             2011    10.74
             2012     9.87
             2013     8.86
             2014     7.76
Algeria      2000     5.55
             2001     5.85
             2002     5.99
             2003     6.30
             2004     7.43
                     ...  
Zambia       2000     0.82
             2001     0.83
             2002     0.83
             2003     0.81
             2004     0.82
             2005     0.83
             2006     0.79
             2007     0.76
             2008     0.73
             2009     0.70
             2010     0.90
             2011     0.63
             2012     0.59
             2013     0.80
             2014     0.76
Zimbabwe     2000     1.99
             2001     2.02
             2002     2.28
             2003     2.37
             2004     2.50
             2005     2.58
             2006     2.64
             2007     2.71
             2008     2.72
             2009     2.99
             2010     2.90
             2011     2.66
             2012     2.20
             2013     2.15
             2014     2.26
dtype: float64

In [950]:
def get_country_series(country, stack):
    c1 = stack[country]
    c1.index = c1.index.map(lambda x:int(x))
    c1 = c1.map(lambda x: int(x.replace(',','')))
    return c1
    
def plot_country(country, stack):
    s = get_country_series(country, stack)
    s.plot(title=country)

In [894]:
plot_country('Congo (Dem. Rep.)', m_stack)



In [285]:
t_stack


Out[285]:
Afghanistan  2000     0.14
             2001     0.14
             2002     0.15
             2003     0.16
             2009     0.02
             2010     0.06
             2011     0.05
             2012     0.30
             2013     0.31
             2014     0.33
Albania      2000     4.62
             2001     6.01
             2002     6.74
             2003     7.87
             2004     8.54
             2005     8.73
             2006     8.05
             2007     9.48
             2008    10.88
             2009    11.52
             2010    10.57
             2011    10.74
             2012     9.87
             2013     8.86
             2014     7.76
Algeria      2000     5.55
             2001     5.85
             2002     5.99
             2003     6.30
             2004     7.43
                     ...  
Zambia       2000     0.82
             2001     0.83
             2002     0.83
             2003     0.81
             2004     0.82
             2005     0.83
             2006     0.79
             2007     0.76
             2008     0.73
             2009     0.70
             2010     0.90
             2011     0.63
             2012     0.59
             2013     0.80
             2014     0.76
Zimbabwe     2000     1.99
             2001     2.02
             2002     2.28
             2003     2.37
             2004     2.50
             2005     2.58
             2006     2.64
             2007     2.71
             2008     2.72
             2009     2.99
             2010     2.90
             2011     2.66
             2012     2.20
             2013     2.15
             2014     2.26
dtype: float64

In [771]:
raw_df2 = pd.DataFrame.from_csv('31461-0002-Data.tsv',sep='\t', index_col=None)
raw_df2 = raw_df[raw_df['seltrans'] == '1']
# raw_df2[field] = raw_df2[field].filter(lambda x: x != ' ')
# raw_df2[field] = raw_df2[field].map(lambda x: int(x))
# raw_df2 = raw_df2[raw_df2[field] == '3' or raw_df2[field] == '2' ]

# raw_df2[raw_df2['country'].isin(raw_df2['country'].unique())]
# raw_df2[['country',field]].groupby('country').max()
# raw_df2['country'].unique()

i. SR0STR – legal framework ii. SR11CHEAT – pre-election cheating iii. SR13VIOL – pre-election violence iv. SR21CHEAT – election-day cheating v. SR23VIOL – election-day violence


In [781]:
aa_df = raw_df2[['newid','country','year','sr22cap','seltrans','sa1','sa2','sr0str','sr11cheat','sr21cheat','sr23viol','sr13viol']]
len(aa_df)


Out[781]:
73

In [782]:
field = 'sr22cap'
viol_df = aa_df[['newid','country','year',field]]
viol_df = viol_df[viol_df[field] != ' ']

In [783]:
viol_df[field] = map(lambda x:int(x), viol_df[field])

In [785]:
adf2 = viol_df[viol_df[field] >= 1].groupby('country').max()
len(adf2)


Out[785]:
14

Fixed broadband subscriptions


In [962]:
itu_broad = pd.DataFrame.from_csv('Fixed_broadband_2000-2014_per100.csv')
itu_broad = itu_broad[['2000','2001','2002','2003','2004','2005','2006','2007',
                         '2008','2009','2010','2011','2012','2013','2014']]
itu_broad


Out[962]:
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
Country
Afghanistan NaN NaN NaN NaN 0.00 0.00 0.00 0.00 0.00 0.00 0.01 NaN 0.01 0.00 0.00
Albania NaN NaN NaN NaN NaN 0.01 NaN 0.32 2.03 2.92 3.35 4.07 5.06 5.75 6.57
Algeria NaN NaN NaN 0.05 0.11 0.40 0.49 0.82 1.36 2.25 2.43 2.60 3.00 3.26 4.01
American Samoa NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
Andorra NaN NaN 1.60 4.76 7.95 12.73 17.85 22.79 25.85 29.17 31.45 33.09 34.34 35.01 35.89
Angola NaN NaN NaN NaN NaN NaN 0.04 0.07 0.09 0.11 0.10 0.11 0.17 0.35 0.41
Anguilla NaN 10.81 11.90 13.71 11.80 17.55 22.00 25.10 27.33 27.65 27.52 28.28 29.01 30.07 30.43
Antigua & Barbuda NaN NaN NaN NaN 2.03 7.03 1.85 2.68 5.84 18.56 8.16 6.81 14.67 17.39 15.07
Argentina NaN 0.25 0.39 0.68 1.42 2.40 4.06 6.61 7.85 8.77 9.98 11.23 12.53 14.57 14.69
Armenia NaN 0.00 0.00 0.00 0.03 0.07 NaN 0.13 0.46 1.34 3.16 5.42 7.14 8.17 9.13
Aruba NaN NaN NaN 1.44 7.05 12.27 13.84 15.80 18.15 18.54 18.91 NaN NaN 18.66 18.56
Ascension NaN NaN NaN NaN 4.38 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
Australia NaN 0.63 1.31 2.59 5.01 9.82 18.69 NaN 24.56 23.69 24.59 24.41 24.88 25.00 25.76
Austria 2.38 3.98 5.57 7.38 10.62 14.25 17.30 19.52 20.73 22.44 24.40 24.88 25.17 26.26 27.54
Azerbaijan NaN NaN 0.01 NaN NaN 0.03 0.05 0.17 0.68 1.11 5.23 10.58 14.71 18.19 19.83
Bahamas NaN 1.37 2.44 3.47 3.97 4.07 4.94 5.99 7.32 8.91 6.85 4.23 NaN 4.11 3.61
Bahrain NaN 0.17 0.68 1.26 1.82 2.44 4.06 6.61 8.39 11.71 12.38 22.55 22.41 22.52 21.39
Bangladesh NaN NaN NaN NaN NaN NaN NaN 0.03 0.03 0.21 0.27 0.31 0.39 0.97 1.19
Barbados NaN NaN NaN 10.09 10.89 11.68 14.11 17.06 17.73 20.54 20.04 22.23 23.62 23.82 26.97
Belarus NaN NaN 0.00 0.00 0.01 0.02 0.12 1.77 5.00 11.47 17.56 22.20 26.92 29.77 28.84
Belgium 1.40 4.47 7.89 11.97 15.52 19.13 23.15 25.56 27.69 29.03 30.83 32.20 33.38 34.48 35.99
Belize NaN NaN NaN 0.36 1.07 1.85 2.60 2.61 2.74 2.77 2.89 3.07 3.08 2.98 2.91
Benin NaN NaN 0.00 0.00 0.00 0.00 0.02 0.01 0.09 0.21 0.28 0.38 0.42 0.41 0.40
Bermuda NaN NaN NaN NaN NaN 28.82 36.75 44.64 52.51 61.72 61.74 NaN NaN 61.37 53.06
Bhutan NaN NaN NaN NaN NaN NaN NaN NaN 0.30 0.48 1.21 1.81 2.26 2.72 3.26
Bolivia NaN NaN 0.04 0.06 0.09 0.14 0.18 0.35 0.81 0.96 0.94 0.71 1.11 1.44 1.59
Bosnia and Herzegovina 0.00 0.00 0.01 0.04 0.17 0.35 1.03 2.19 4.88 7.58 10.16 11.21 12.24 13.48 14.15
Botswana NaN NaN NaN NaN NaN 0.09 0.09 0.18 0.46 0.51 0.61 0.96 1.11 1.07 1.63
Brazil 0.06 0.19 0.41 0.53 1.72 1.74 2.53 4.01 5.22 6.06 7.22 9.06 9.62 10.66 11.46
British Virgin Islands NaN NaN NaN NaN NaN NaN NaN NaN NaN 28.97 25.27 26.33 26.47 21.81 22.38
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
Tajikistan NaN NaN NaN 0.00 NaN NaN NaN 0.05 0.05 0.06 0.06 0.06 0.07 0.07 0.07
Tanzania NaN NaN NaN NaN NaN 0.01 0.01 0.01 0.02 0.02 0.02 0.06 0.09 0.11 0.17
TFYR Macedonia NaN NaN NaN NaN NaN 0.60 1.74 4.79 8.62 11.08 12.31 13.38 14.83 16.06 16.19
Thailand NaN 0.00 NaN 0.02 0.25 0.85 1.36 1.96 3.13 3.96 4.90 5.85 6.77 7.75 8.21
Timor-Leste NaN NaN NaN 0.00 0.00 0.00 0.00 0.00 0.01 0.04 0.05 0.05 0.05 0.06 0.07
Togo NaN NaN NaN NaN NaN NaN NaN 0.02 0.03 0.07 0.43 0.53 0.62 0.10 0.11
Tokelau NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
Tonga NaN NaN 0.01 0.02 0.33 0.64 0.62 0.76 0.70 0.97 1.06 1.24 1.43 1.61 1.70
Trinidad & Tobago NaN NaN 0.01 0.07 0.33 0.83 1.58 2.71 6.49 9.83 12.26 12.93 15.06 15.84 17.47
Tunisia NaN NaN 0.00 0.00 0.03 0.17 0.43 0.93 2.19 3.55 4.54 5.20 4.86 4.86 4.44
Turkey NaN 0.02 0.03 0.30 0.86 2.35 4.04 6.84 8.18 9.05 9.84 10.39 10.63 11.87 11.69
Turkmenistan NaN NaN NaN NaN NaN NaN NaN NaN 0.00 0.01 0.01 0.02 0.03 0.03 0.04
Turks & Caicos Is. NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
Tuvalu NaN NaN NaN NaN 0.52 1.55 2.57 2.77 2.96 1.02 2.44 4.57 5.58 7.09 9.10
Uganda NaN NaN NaN NaN NaN 0.00 0.00 0.01 0.02 0.02 0.04 0.10 0.11 0.27 0.29
Ukraine NaN NaN NaN NaN NaN 0.28 1.11 1.71 3.44 4.12 6.42 6.92 8.01 8.83 8.42
United Arab Emirates 0.07 0.27 0.52 0.90 1.53 3.12 4.94 6.55 8.20 8.95 9.32 9.71 10.37 11.15 11.51
United Kingdom 0.09 0.56 2.28 5.22 10.21 16.42 21.47 40.65 28.22 28.97 30.86 32.98 34.54 36.49 37.38
United States 2.48 4.45 6.85 9.47 12.64 17.16 20.02 23.60 25.15 25.85 27.07 28.04 29.14 30.00 30.37
Uruguay NaN NaN NaN NaN 0.81 1.46 3.20 4.94 7.30 9.45 11.37 13.98 17.10 21.63 24.58
Uzbekistan NaN NaN NaN 0.01 0.02 0.03 0.03 0.07 0.24 0.32 0.42 0.52 0.77 1.06 1.33
Vanuatu NaN NaN NaN 0.01 0.01 0.03 0.04 0.06 0.09 0.22 0.21 0.14 0.13 0.12 1.77
Vatican NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
Venezuela 0.02 0.15 0.31 0.45 0.80 1.33 1.98 3.10 3.97 4.90 5.76 6.15 6.80 7.35 7.82
Viet Nam NaN NaN 0.00 0.01 0.06 0.25 0.60 1.50 2.35 3.64 4.12 4.27 5.26 5.62 6.48
Virgin Islands (US) NaN NaN NaN NaN 1.37 2.75 NaN 5.54 6.94 8.45 8.55 NaN NaN 8.53 8.52
Wallis and Futuna NaN NaN NaN NaN NaN NaN NaN 1.61 4.99 6.42 7.82 8.40 8.81 9.53 10.42
Yemen NaN NaN NaN NaN NaN 0.01 0.01 0.05 0.12 0.24 0.37 0.47 0.70 1.05 1.36
Zambia 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.03 0.05 0.08 0.08 0.12 0.11 0.10 0.14
Zimbabwe NaN 0.01 0.02 0.05 0.07 0.08 0.08 0.12 0.14 0.37 0.25 0.25 0.52 0.73 1.04

228 rows × 15 columns


In [963]:
b_stack = itu_broad.stack()

In [902]:
def get_country_series_b(country, stack):
    c1 = stack[country]
    c1.index = c1.index.map(lambda x:int(x))
#     c1 = c1.map(lambda x: int(x.replace(',','')))
    return c1
    
def plot_country_b(country, stack):
    s = get_country_series_b(country, stack)
    s.plot(title=country,xlim=[1999,2015])

In [927]:
for c in seltrans_df.country.unique():
    try:
        if(is_above(c,5)):
            plot_country_b(c, b_stack)
    except:
        continue



In [943]:
def is_above(country, base, stack):
    cstack = stack[country]
    return cstack.max() >= base

In [944]:
is_above("Algeria", 5, b_stack)


Out[944]:
False

In [951]:
for c in seltrans_df.country.unique():
    try:
#         if(is_above(c,0.5*(10**8))):
        if(is_above(c,0.9*(10**8), m_stack)):
            plot_country(c, m_stack)
    except:
        continue



In [952]:
is_above("Afghanistan", 1000000000000, m_stack)
m_stack["Afghanistan"].max()


Out[952]:
'7,898,909'

In [990]:
ldc = ["Angola",
"Madagascar",
"Benin",
"Malawi",
"Burkina Faso",
"Mali",
"Burundi",
"Mauritania",
"Central African Rep.",
"Mozambique",
"Chad",
"Niger",
"Comoros",
"Rwanda",
"Congo (Dem. Rep.)",
"S. Tome & Principe",
"Djibouti",
"Senegal",
"Equatorial Guinea",
"Sierra Leone",
"Eritrea",
"Somalia",
"Ethiopia",
"South Sudan",
"Gambia",
"Sudan",
"Guinea",
"Togo",
"Guinea-Bissau",
"Uganda",
"Lesotho",
"Tanzania",
"Liberia",
"Zambia",
"Afghanistan",
"Nepal",
"Bangladesh",
"Solomon Islands",
"Bhutan",
"Timor-Leste",
"Cambodia",
"Tuvalu",
"Kiribati",
"Vanuatu",
"Lao P.D.R.",
"Yemen",
"Myanmar",
"Haiti"]

In [1013]:
v = 0
for c in ldc:
    try:
        str_val = m_stack[c]["2014"]
        str_val = str_val.replace(',','')
        v += int(str_val)
    except:
        print c


S. Tome & Principe

In [1017]:
m_stack["Comoros"]["2014"]


Out[1017]:
'383,000'

In [1018]:
v2 = v+383000

In [1021]:
v2/float(932000000)


Out[1021]:
0.6227034763948498

In [ ]:


In [ ]: