In [0]:
import numpy as np
In [2]:
data = 'hello world'
print(data)
In [0]:
alphabet = 'abcdefghijklmnopqrstuvwxyz '
In [0]:
char_to_int = dict((c, i) for i, c in enumerate(alphabet))
int_to_char = dict((i, c) for i, c in enumerate(alphabet))
In [5]:
integer_encoded = [char_to_int[char] for char in data]
print(integer_encoded)
In [0]:
onehot_encoded = list()
for value in integer_encoded:
letter = [0 for _ in range(len(alphabet))]
letter[value] = 1
onehot_encoded.append(letter)
In [7]:
print(onehot_encoded)
In [8]:
inverted = int_to_char[np.argmax(onehot_encoded[0])]
print(inverted)
In [0]:
decoded = list()
for i in range(len(onehot_encoded)):
decoded_char = int_to_char[np.argmax(onehot_encoded[i])]
decoded.append(decoded_char)
In [10]:
print (''.join([str(item) for item in decoded]))
In [0]:
from numpy import array
from numpy import argmax
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder
In [12]:
data = ['cold',
'cold',
'warm',
'cold',
'hot',
'hot',
'warm',
'cold',
'warm',
'hot']
values = array(data)
print(values)
In [13]:
label_encoder = LabelEncoder()
label_encoded = label_encoder.fit_transform(values)
print(label_encoded)
In [14]:
onehot_encoder = OneHotEncoder(sparse=False)
label_encoded = label_encoded.reshape(len(label_encoded), 1)
onehot_encoded = onehot_encoder.fit_transform(label_encoded)
print(onehot_encoded)
In [15]:
inverted = label_encoder.inverse_transform([argmax(onehot_encoded[0, :])])
In [16]:
print(inverted)
In [17]:
from numpy import array
from numpy import argmax
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder
from keras.utils import to_categorical
In [18]:
data = ['cold', 'cold', 'warm', 'cold', 'hot', 'hot', 'warm', 'cold', 'warm', 'hot']
values = array(data)
print(values)
In [0]:
label_encoder = LabelEncoder()
label_encoded = label_encoder.fit_transform(values)
In [20]:
print(label_encoded)
In [21]:
# one hot encode
encoded = to_categorical(label_encoded)
print(encoded)
# invert encoding
label_encoded = argmax(encoded[0])
inverted = label_encoder.inverse_transform(label_encoded)
In [22]:
print(inverted)
In [23]:
from numpy import array
from numpy import argmax
from keras.utils import to_categorical
# define example
data = [1, 3, 2, 0, 3, 2, 2, 1, 0, 1]
data = array(data)
print(data)
# one hot encode
encoded = to_categorical(data)
print(encoded)
# invert encoding
inverted = argmax(encoded[0])
In [24]:
print(inverted)