In [5]:
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
In [6]:
matplotlib.__version__, np.__version__, pd.__version__
Out[6]:
In [16]:
plt.clf()
# sample data
x = np.linspace(0.0,100,50)
y = np.random.uniform(low=0,high=10,size=50)
# create figure and axes
fig, axes = plt.subplots(1,2)
ax1 = axes[0]
ax2 = axes[1]
# just plot things on each individual axes
ax1.scatter(x,y,c='red',marker='+')
ax2.bar(x,y)
plt.gcf().set_size_inches(10,5)
plt.show()
In [19]:
plt.clf()
# sample data
x = np.linspace(0.0,100,50)
y = np.random.uniform(low=0,high=10,size=50)
# create figure and axes
fig, axes = plt.subplots(2,1)
ax1 = axes[0]
ax2 = axes[1]
# just plot things on each individual axes
ax1.scatter(x,y,c='red',marker='+')
ax2.bar(x,y)
plt.gcf().set_size_inches(5,5)
plt.show()
In [27]:
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0.0,100,50)
y = np.random.uniform(low=0,high=10,size=50)
# plt.subplots returns an array of arrays. We can
# directly assign those to variables directly
# like this
fig, ((ax1,ax2),(ax3,ax4)) = plt.subplots(2,2)
# just plot things on each individual axes
ax1.scatter(x,y,c='red',marker='+')
ax2.bar(x,y)
ax3.scatter(x,y,marker='x')
ax4.barh(x,y)
plt.gcf().set_size_inches(5,5)
plt.show()
In [66]:
import matplotlib.pyplot as plt
import pandas as pd
df = pd.DataFrame({
'string_col':['foo','bar','baz','quux'],
'x':[10,20,30,40],
'y':[1,2,3,4]
})
df
Out[66]:
In [69]:
plt.clf()
# plt.subplots returns an array of arrays. We can
# directly assign those to variables directly
fig, ((ax1,ax2),(ax3,ax4)) = plt.subplots(2,2)
# bar plot for column 'x'
df.plot(y='x', kind='bar', ax=ax1)
ax1.set_xlabel('index')
# horizontal bar plot for column 'y'
df.plot(y='y', kind='bar', ax=ax2, color='orange')
ax2.set_xlabel('index')
# both columns in a scatter plot
df.plot('x','y', kind='scatter', ax=ax3)
# to have two lines, plot twice in the same axis
df.plot(y='x', kind='line', ax=ax4)
df.plot(y='y', kind='line', ax=ax4)
ax4.set_xlabel('index')
plt.subplots_adjust(wspace=0.3, hspace=0.5)
plt.show()
In [78]:
plt.clf()
# plt.subplots returns an array of arrays. We can
# directly assign those to variables directly
fig, ((ax1,ax2),(ax3,ax4)) = plt.subplots(2,2)
# sample data
x = np.linspace(0.0,100,50)
y = np.random.uniform(low=0,high=10,size=50)
# plot individual subplots
ax1.bar(x,y)
ax2.bar(x,y)
ax3.scatter(x,y)
ax4.plot(x)
ax4.set_title('This is Plot 4',size=14)
plt.subplots_adjust(wspace=0.3, hspace=0.5)
plt.show()
In [80]:
import numpy as np
import matplotlib.pyplot as plt
# sample data
x = np.linspace(0.0,100,50)
y = np.random.uniform(low=0,high=10,size=50)
# plt.subplots returns an array of arrays. We can
# directly assign those to variables directly
fig, ((ax1,ax2),(ax3,ax4)) = plt.subplots(2,2)
# just plot things on each individual axes
ax1.scatter(x,y,c='red',marker='+')
ax2.bar(x,y)
ax3.scatter(x,y,marker='x')
ax4.barh(x,y)
# here, set the width and the height between the subplots
# the default value is 0.2 for each
plt.subplots_adjust(wspace=0.50, hspace=1.0)
plt.show()
In [101]:
import numpy as np
import matplotlib.pyplot as plt
plt.clf()
# plt.subplots returns an array of arrays. We can
# directly assign those to variables directly
fig, ((ax1,ax2)) = plt.subplots(1,2)
np.random.seed(42)
x = np.linspace(0.0,100,50)
# sample data in different magnitudes
y1 = np.random.normal(loc=10, scale=2, size=10)
y2 = np.random.normal(loc=20, scale=2, size=10)
ax1.plot(y1)
ax2.plot(y2)
ax1.grid(True,alpha=0.3)
ax2.grid(True,alpha=0.3)
ax1.set_ylim(0,25)
ax2.set_ylim(0,25)
plt.subplots_adjust(wspace=0.3, hspace=0.5)
plt.show()