In [1]:
import matplotlib.pyplot as plt
import json
import pandas as pd
This notebook contains few data analysis through the China's CN-01 data from Cultural Crowds dataset¹
¹ FAVARETTO, R.; DIHL, L. ; BARRETO, R. ; MUSSE, S. R. Using Group Behaviors To Detect Hofstede Cultural Dimensions. IEEE International Conference on Image Processing (ICIP), 2016.
In [2]:
d = None
with open('..\..\group_analysis.json') as f:
d = json.load(f)
Collected data about the number of groups through time. The average of the number of groups was 15.7777, minimum of 14 and maximum of 19.
In [3]:
df_num_groups = pd.DataFrame(data={'Min. Num. of Groups': d['min_num_groups'], 'Avg. Num. of Groups': d['avg_num_groups'], 'Max. Num. of Groups': d['max_num_groups']})
df_num_groups
Out[3]:
In [4]:
plt.figure()
ax = df_num_groups.plot(title='Number of Groups Analysis')
plt.xlabel('Frame nº')
plt.ylabel('Number of Groups')
plt.show()
Collected data about the number persons for each group through time. The average of the number of people for group was 2.528361, minimum of 1 and maximum of 7.
In [5]:
df_group_elements = pd.DataFrame(data={'Min. Group Elements': d['min_group_elements'], 'Avg. Group Elements': d['avg_group_elements'], 'Max. Group Elements': d['max_group_elements']})
df_group_elements
Out[5]:
In [6]:
plt.figure()
ax = df_group_elements.plot(title='Number of Group Elements')
plt.xlabel('Frame nº')
plt.ylabel('Number of Group Elements')
plt.show()
In [ ]: