Introduction

In this notebook we demonstrate how to use previously computed spectra to create new gold-standard spectra which can be used to categorize the quality of new samples.


In [1]:
import PaSDqc

In [2]:
freq, nd, sample_list = PaSDqc.extra_tools.mk_ndarray("../data/gold_standard/")

In [3]:
sample_list


Out[3]:
['1465_bad1',
 '1465_bad2',
 '1465_bad3',
 '1465_good1',
 '1465_good2',
 '1465_good3',
 '1465_good4']

In [4]:
labels = ['bad', 'bad', 'bad', 'good', 'good', 'good', 'good']

In [5]:
cat_spec = PaSDqc.extra_tools.mk_categorical_spectra(freq, nd, labels)

In [6]:
cat_spec.to_csv("categorical_spectra_Qiagen_heat_1x.txt", sep="\t")

These new categorical spectra could be used by supplying the command line option -c /path/to/categorical_spectra_Qiagen_heat_1x.txt to PaSDqc