次のような簡易モデルを考える.
労働者は効用の現在価値の流列の和 $$ \sum_{t=0}^{\infty} \beta^t u(y_t) $$ を最大化するように「受け入れ」または「拒否」の行動を決めていく. ただし,
である.
これは最適停止問題の一種. トレードオフは:
状態 (state) は
であるだが,実は「賃金 $w_s$ で雇用中」という状態と 「失業中に賃金 $w_s$ のオファーが降ってきた」という状態は同一視してよい (両者の価値は等しい).
政策 (policy) (精確には定常 Markov 政策) とは, 各状態に対して「受け入れ」「拒否」のいずれの行動をとるかを定めた関数のこと (この定常 Markov 政策の範囲で考えれば十分). (失業中は「受け入れ」も「拒否」も選べないが,便宜上,どちらかを選べるがいずれの帰結も同じ,とする.)
けっきょく,Bellman 方程式は $$ \begin{aligned} V_s &= \max\{u(c) + \beta E[V_{s'}], u(w_s) + \beta[(1 - \alpha) V_s + \alpha U]\} \quad (s = 1, \ldots, n) \\ U &= u(c) + \beta E[V_{s'}] \end{aligned} $$ と書ける.
最適政策関数 (optimal policy function) は
という形になる.
実はこのクラスの問題は解析的に解けるが,ここでは QuantEcon.jl の DiscreteDP を使って解いてみる.
以下は ddp_ex_job_search_jl.ipynb の簡易版.
In [1]:
using QuantEcon
import QuantEcon: solve
using Distributions
using PyPlot
using Roots
In [2]:
type JobSearchModel
# Parameters
w::Vector{Float64}
w_pdf::Vector{Float64}
beta::Float64
alpha::Float64
# Internal variables
u::Function
ddp::DiscreteDP
num_states::Integer
num_actions::Integer
rej::Integer
acc::Integer
function JobSearchModel(w::Vector, w_pdf::Vector, beta::Float64, alpha::Float64)
rho = 2
# Utility function
function u(y::Vector)
small_number = -9999999
nonpositive = (y .<= 0)
if rho == 1
util = log(y)
else
util = (y.^(1 - rho) - 1)/(1 - rho)
end
util[nonpositive] = small_number
return util
end
u_w = u(w)
num_states = length(w) + 1
num_actions = 2
rej, acc = 1, 2
# Reward array
R0 = zeros(num_states, num_actions)
R0[1:end-1, acc] = u_w
# Transition probability array
Q = zeros(num_states, num_actions, num_states)
# Reject
for s in 1:num_states
Q[s, rej, 1:end-1] = w_pdf
end
# Accept
for s in 1:num_states-1
Q[s, acc, s] = 1 - alpha
Q[s, acc, end] = alpha
end
Q[end, acc, 1:end-1] = w_pdf
ddp = DiscreteDP(R0, Q, beta)
js = new(w, w_pdf, beta, alpha, u, ddp,
num_states, num_actions, rej, acc)
return js
end
end;
In [3]:
function solve(js::JobSearchModel, c::Float64)
n, m = js.num_states, js.num_actions
rej = js.rej
js.ddp.R[:, rej] = js.u([c])[1]
js.ddp.R[end, :] = js.u([c])[1]
res = solve(js.ddp, PFI)
V = res.v[1:end-1] # Values of jobs
U = res.v[end] # Value of unemployed
C = ind2sub(js.ddp, res.sigma)[1:end-1] - 1
lamb = dot(js.w_pdf, C)
pi = [js.alpha, lamb]
pi /= sum(pi)
return V, U, C, pi
end;
以下のパラメータ値は lakemodel_example.py より.
In [4]:
w = linspace(0, 175, 201)
logw_dist = Normal(log(20), 1)
logw_dist_cdf = cdf(logw_dist, log(w))
logw_dist_pdf = logw_dist_cdf[2:end] - logw_dist_cdf[1:end-1]
logw_dist_pdf /= sum(logw_dist_pdf)
w = Array((w[2:end] + w[1:end-1])/2);
In [5]:
alpha = 0.013
alpha_q = (1-(1-alpha)^3)
beta = 0.99;
JobSearchModel タイプのインスタンスを作る:
In [6]:
js = JobSearchModel(w, logw_dist_pdf, beta, alpha_q);
例えば失業手当を $c = 40$ として解いてみる:
In [7]:
c = 40.
V, U, C, pi = solve(js, c);
In [8]:
s_star = length(w) - sum(C) + 1
println("Optimal policy: Accept if and only if w >= $(w[s_star])")
In [9]:
fig, ax = subplots(figsize=(6, 4))
ax[:plot](w, V, label=L"$V$")
ax[:plot]((w[1], w[end]), (U, U), "r--", label=L"$U$")
ax[:set_title]("Optimal value function")
ax[:set_xlabel]("Wage")
ax[:set_ylabel]("Value")
legend(loc=2)
show()
$c = 80$ とすると:
In [10]:
c = 80.
V, U, C, pi = solve(js, c)
s_star = length(w) - sum(C) + 1
println("Optimal policy: Accept if and only if w >= $(w[s_star])")
In [11]:
fig, ax = subplots(figsize=(6, 4))
ax[:plot](w, V, label=L"$V$")
ax[:plot]((w[1], w[end]), (U, U), "r--", label=L"$U$")
ax[:set_title]("Optimal value function")
ax[:set_xlabel]("Wage")
ax[:set_ylabel]("Value")
legend(loc=2)
show()
次に,上の意思決定問題に直面している労働者が多数いるとして, 最適失業保険制度の設計問題を考える.
トレードオフ:
In [12]:
type UnemploymentInsurancePolicy
w::Vector{Float64}
w_pdf::Vector{Float64}
beta::Float64
alpha::Float64
end;
In [13]:
function solve_job_search_model(uip::UnemploymentInsurancePolicy,
c::Float64, T::Float64)
js = JobSearchModel(uip.w-T, uip.w_pdf, uip.beta, uip.alpha)
V, U, C, pi = solve(js, c-T)
return V, U, C, pi
end;
In [14]:
function budget_balance(uip::UnemploymentInsurancePolicy, c::Float64, T::Float64)
V, U, C, pi = solve_job_search_model(uip, c, T)
return T - pi[1]*c
end;
In [15]:
function implement(uip::UnemploymentInsurancePolicy, c::Float64)
# Budget balancing tax given c
T = fzero(T -> budget_balance(uip, c, T), 0., c, xtolrel=1e-3)
V, U, C, pi = solve_job_search_model(uip, c, T)
EV = dot(C .* V, uip.w_pdf) / (dot(C, uip.w_pdf))
W = pi[1] * U + pi[2] * EV
return T, W, pi
end;
In [16]:
uip = UnemploymentInsurancePolicy(w, logw_dist_pdf, beta, alpha_q);
In [17]:
grid_size = 26
cvec = linspace(5, 135, grid_size)
Ts, Ws = Array(Float64, grid_size), Array(Float64, grid_size)
pis = Array(Float64, 2, grid_size)
for (i, c) in enumerate(cvec)
T, W, pi = implement(uip, c)
Ts[i], Ws[i], pis[:, i] = T, W, pi
end
i_max = indmax(Ws)
println("Optimal unemployment benefit: $(cvec[i_max])")
In [18]:
function plot(ax, y_vec, title)
ax[:plot](cvec, y_vec)
ax[:set_xlabel](L"$c$")
ax[:vlines](cvec[i_max], ax[:get_ylim]()[1], y_vec[i_max], "k", "-.")
ax[:set_title](title)
end
fig, axes = subplots(2, 2)
plot(axes[1, 1], Ws, "Welfare")
plot(axes[1, 2], Ts, "Taxes")
plot(axes[2, 1], vec(pis[2, :]), "Employment Rate")
plot(axes[2, 2], vec(pis[1, :]), "Unemployment Rate")
tight_layout()
show()
In [19]:
fig, ax = subplots(figsize=(6, 4))
plot(ax, cvec-Ts, "Net Compensation")
show()
In [ ]: