Daisuke Oyama
Faculty of Economics, University of Tokyo
We study an optimal stopping problem, in the context of job search as discussed in http://quant-econ.net/py/lake_model.html.
In [1]:
using QuantEcon
import QuantEcon: solve
using Distributions
using PyPlot
using Roots
We skip the description of the model, just writing down the Bellman equation: $$ \begin{aligned} U &= u(c) + \beta \left[(1 - \gamma) U + \gamma E[V_s]\right], \\ V_s &= \max\left\{U, u(w_s) + \beta \left[(1 - \alpha) V_s + \alpha U\right] \right\}. \end{aligned} $$ For this class of problem, we can characterize the solution analytically.
The optimal policy $\sigma^*$ is monotone; it is characterized by a threshold $s^*$, for which $\sigma^*(s) = 1$ if and only if $s \geq s^*$, where actions $0$ and $1$ represent "reject" and "accept", respectively. The threshold is defined as follows: Let $$ \begin{aligned} g(s) &= u(w_s) - u(c), \\ h(s) &= \frac{\beta \gamma}{1 - \beta (1 - \alpha)} \sum_{s' \geq s} p_s u(w_s). \end{aligned} $$ It is easy to see that $g$ is increasing and $h$ is decreasing. Then the threshold $s^*$ is such that $s \geq s^*$ if and only if $g(s) > h(s)$.
Given $s^*$, the optimal values can be computed as follows: $$ \begin{aligned} U &= \frac{\{1 - (1 - \alpha) \beta\} u(c) + \beta \gamma \sum_{s \geq s^*} p_s u(w_s)} {(1 - \beta) \left[\{1 - (1 - \alpha) \beta\} + \beta \gamma \sum_{s \geq s^*} p_s\right]}, \\ V_s &= \begin{cases} U & \text{if $s < s^*$} \\ \dfrac{u(w_s) + \alpha \beta U}{1 - (1 - \alpha) \beta} & \text{if $s \geq s^*$}. \end{cases} \end{aligned} $$
The optimal policy defines a Markov chain over $\{\text{unemployed}, \text{employed}\}$. Its stationary distribution is $\pi = \left(\frac{\alpha}{\alpha + \lambda}, \frac{\lambda}{\alpha + \lambda}\right)$, where $\lambda = \gamma \sum_{s \geq s^*} p(w_s)$; note that the flow from unemployed to employed is $\lambda$, while the flow from employed to unemployed is $\alpha$.
The expected value at the stationary distribution is $$ \pi_0 U + \pi_1 \frac{\sum_{s \geq s^*} p_s V_s}{\sum_{s \geq s^*} p_s}. $$
The above analytical solution aside,
we solve the job search problem using the DiscreteDP
type:
In [2]:
type JobSearchModel
# Parameters
w::Vector{Float64}
w_pdf::Vector{Float64}
beta::Float64
alpha::Float64
gamma::Float64
rho::Float64
# Internal variables
u::Function
ddp::DiscreteDP
num_states::Integer
num_actions::Integer
rej::Integer
acc::Integer
function JobSearchModel(w::Vector, w_pdf::Vector, beta::Float64;
alpha::Float64=0., gamma::Float64=1., rho::Float64=0.)
# Utility function
function u(y::Vector{Float64})
small_number = -9999999
nonpositive = (y .<= 0)
if rho == 1
util = log(y)
else
util = (y.^(1 - rho) - 1)/(1 - rho)
end
util[nonpositive] = small_number
return util
end
u_w = u(w)
num_states = length(w) + 1
num_actions = 2
rej, acc = 1, 2
# Reward array
R0 = zeros(num_states, num_actions)
R0[1:end-1, acc] = u_w
# Transition probability array
Q = zeros(num_states, num_actions, num_states)
# Reject
for s in 1:num_states
Q[s, rej, 1:end-1] = w_pdf * gamma
Q[s, rej, end] = 1 - gamma
end
# Accept
for s in 1:num_states-1
Q[s, acc, s] = 1 - alpha
Q[s, acc, end] = alpha
end
Q[end, acc, 1:end-1] = w_pdf
ddp = DiscreteDP(R0, Q, beta)
js = new(w, w_pdf, beta, alpha, gamma, rho, u, ddp,
num_states, num_actions, rej, acc)
return js
end
end;
In [3]:
function solve(js::JobSearchModel, c::Float64)
n, m = js.num_states, js.num_actions
rej = js.rej
js.ddp.R[:, rej] = js.u([c])[1]
js.ddp.R[end, :] = js.u([c])[1]
res = solve(js.ddp, PFI)
V::Vector{Float64} = res.v[1:end-1] # Values of jobs
U::Float64 = res.v[end] # Value of unemployed
C::Vector{Int64} = res.sigma[1:end-1] - 1 # Optimal policy
lamb::Float64 = dot(js.w_pdf, C) * js.gamma
pi::Vector{Float64} = [js.alpha, lamb]
pi /= sum(pi) # Stationary distribution
return V, U, C, pi
end;
The following paramter values are from lakemodel_example.py.
In [4]:
w = linspace(0, 175, 201) # wage grid
# compute probability of each wage level
logw_dist = Normal(log(20), 1)
logw_dist_cdf = cdf(logw_dist, log(w))
logw_dist_pdf = logw_dist_cdf[2:end] - logw_dist_cdf[1:end-1]
logw_dist_pdf /= sum(logw_dist_pdf)
w = Array((w[2:end] + w[1:end-1])/2);
In [5]:
gamma = 1.
alpha = 0.013 # Monthly
alpha_q = (1-(1-alpha)^3) # Quarterly
beta = 0.99
rho = 2. # risk-aversion;
In [6]:
js = JobSearchModel(w, logw_dist_pdf, beta, alpha=alpha_q, gamma=gamma, rho=rho);
Take a look at the optimal solution for $c = 40$ for example:
In [7]:
c = 40.
V, U, C, pi = solve(js, c);
In [8]:
s_star = length(w) - sum(C) + 1
println("Optimal policy: Accept if and only if w >= $(w[s_star])")
In [9]:
fig, ax = subplots(figsize=(6, 4))
ax[:plot](w, V, label=L"$V$")
ax[:plot]((w[1], w[end]), (U, U), "r--", label=L"$U$")
ax[:set_title]("Optimal value function")
ax[:set_xlabel]("Wage")
ax[:set_ylabel]("Value")
legend(loc=2)
show()
We compute the optimal level of unemployment insurance as in the lecture, mimicking lakemodel_example.py.
In [10]:
type UnemploymentInsurancePolicy
w::Vector{Float64}
w_pdf::Vector{Float64}
beta::Float64
alpha::Float64
gamma::Float64
rho::Float64
function UnemploymentInsurancePolicy(w::Vector, w_pdf::Vector, beta::Float64;
alpha::Float64=0., gamma::Float64=1., rho::Float64=0.)
uip = new(w, w_pdf, beta, alpha_q, gamma, rho)
return uip
end
end;
In [11]:
function solve_job_search_model(uip::UnemploymentInsurancePolicy,
c::Float64, T::Float64)
js = JobSearchModel(uip.w-T, uip.w_pdf, uip.beta,
alpha=uip.alpha, gamma=uip.gamma, rho=uip.rho)
V, U, C, pi = solve(js, c-T)
return V, U, C, pi
end;
In [12]:
function budget_balance(uip::UnemploymentInsurancePolicy, c::Float64, T::Float64)
V, U, C, pi = solve_job_search_model(uip, c, T)
return T - pi[1]*c
end;
In [13]:
function implement(uip::UnemploymentInsurancePolicy, c::Float64)
# Budget balancing tax given c
T = fzero(T -> budget_balance(uip, c, T), 0., c, xtolrel=1e-3)
V, U, C, pi = solve_job_search_model(uip, c, T)
EV = dot(C .* V, uip.w_pdf) / (dot(C, uip.w_pdf))
W = pi[1] * U + pi[2] * EV
return T, W, pi
end;
In [14]:
uip = UnemploymentInsurancePolicy(w, logw_dist_pdf, beta,
alpha=alpha_q, gamma=gamma, rho=rho);
In [15]:
grid_size = 26
cvec = linspace(5, 135, grid_size)
Ts, Ws = Array(Float64, grid_size), Array(Float64, grid_size)
pis = Array(Float64, 2, grid_size)
for (i, c) in enumerate(cvec)
T, W, pi = implement(uip, c)
Ts[i], Ws[i], pis[:, i] = T, W, pi
end
i_max = indmax(Ws)
println("Optimal unemployment benefit: $(cvec[i_max])")
In [16]:
function plot(ax, y_vec, title)
ax[:plot](cvec, y_vec)
ax[:set_xlabel](L"$c$")
ax[:vlines](cvec[i_max], ax[:get_ylim]()[1], y_vec[i_max], "k", "-.")
ax[:set_title](title)
end
fig, axes = subplots(2, 2)
plot(axes[1, 1], Ws, "Welfare")
plot(axes[1, 2], Ts, "Taxes")
plot(axes[2, 1], vec(pis[2, :]), "Employment Rate")
plot(axes[2, 2], vec(pis[1, :]), "Unemployment Rate")
tight_layout()
show()
In [17]:
fig, ax = subplots(figsize=(6, 4))
plot(ax, cvec-Ts, "Net Compensation")
show()
In [ ]: