In [1]:
%load_ext autoreload
%autoreload 2
import pandas as pd
import numpy as np
import latools as la
from IPython.display import HTML
from comparison_tools import helpers, stats_1sample, plots_1sample
%matplotlib inline
In [2]:
HTML(filename="./Parameter_Tables/iolite_data.html")
Out[2]:
In [3]:
# define data format description so it can be imported by latools
dataformat = {'genfromtext_args': {'delimiter': ',',
'skip_header': 15},
'column_id': {'name_row': 13,
'delimiter': ',',
'timecolumn': 0,
'pattern': '([0-9]{1,3}[A-z]{1,2})'},
'meta_regex': {0: (['name', 'date'],
'([A-z0-9-]+):([0-9/ :AMP]+);')}
}
In [4]:
dat = la.analyse('raw_data/iolite_data', internal_standard='43Ca', srm_identifier='NIST610',
dataformat=dataformat, names='metadata_names')
In [5]:
sample = '1308H1-1e'
In [6]:
dat.data[sample].tplot() # view raw data
Out[6]:
In [7]:
# despiking
dat.despike(noise_despiker=True, win=3)
In [8]:
dat.data[sample].tplot() # view despiked data
Out[8]:
In [9]:
dat.autorange(on_mult=[3,.6], off_mult=[.5,3])
In [10]:
dat.data[sample].tplot(ranges=True) # view autorange info
Out[10]:
In [11]:
dat.bkg_calc_weightedmean(weight_fwhm=1000, bkg_filter=True)
In [12]:
fig, ax = dat.bkg_plot()