Interact Exercise 4

Imports


In [2]:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np

In [3]:
from IPython.html.widgets import interact, interactive, fixed
from IPython.display import display


:0: FutureWarning: IPython widgets are experimental and may change in the future.

Line with Gaussian noise

Write a function named random_line that creates x and y data for a line with y direction random noise that has a normal distribution $N(0,\sigma^2)$:

$$ y = m x + b + N(0,\sigma^2) $$

Be careful about the sigma=0.0 case.


In [1]:
import scipy.stats

After doing some research on stackoverflow, I learned how to use scipy.stats to generate normally distributed random noise for my y-values.


In [84]:
def random_line(m, b, sigma, size=10):
    """Create a line y = m*x + b + N(0,sigma**2) between x=[-1.0,1.0]
    
    Parameters
    ----------
    m : float
        The slope of the line.
    b : float
        The y-intercept of the line.
    sigma : float
        The standard deviation of the y direction normal distribution noise.
    size : int
        The number of points to create for the line.
    
    Returns
    -------
    x : array of floats
        The array of x values for the line with `size` points.
    y : array of floats
        The array of y values for the lines with `size` points.
    """
    x = np.linspace(-1.0,1.0,size)
    noise = scipy.stats.norm.rvs(loc=0, scale=sigma, size=size)
    y = m*x + b + noise
    return x,y

In [85]:
m = 0.0; b = 1.0; sigma=0.0; size=3
x, y = random_line(m, b, sigma, size)
assert len(x)==len(y)==size
assert list(x)==[-1.0,0.0,1.0]
assert list(y)==[1.0,1.0,1.0]
sigma = 1.0
m = 0.0; b = 0.0
size = 500
x, y = random_line(m, b, sigma, size)
assert np.allclose(np.mean(y-m*x-b), 0.0, rtol=0.1, atol=0.1)
assert np.allclose(np.std(y-m*x-b), sigma, rtol=0.1, atol=0.1)

Write a function named plot_random_line that takes the same arguments as random_line and creates a random line using random_line and then plots the x and y points using Matplotlib's scatter function:

  • Make the marker color settable through a color keyword argument with a default of red.
  • Display the range $x=[-1.1,1.1]$ and $y=[-10.0,10.0]$.
  • Customize your plot to make it effective and beautiful.

In [10]:
def ticks_out(ax):
    """Move the ticks to the outside of the box."""
    ax.get_xaxis().set_tick_params(direction='out', width=1, which='both')
    ax.get_yaxis().set_tick_params(direction='out', width=1, which='both')

In [90]:
def plot_random_line(m, b, sigma, size=10, color='red'):
    """Plot a random line with slope m, intercept b and size points."""
    x = np.linspace(-1.0,1.0,size)
    noise = scipy.stats.norm.rvs(loc=0, scale=sigma, size=size)
    y = m*x + b + noise
    f = plt.figure(figsize=(7,5))
    plt.scatter(x,y, color='%s' % color, marker='o', alpha = .85)
    plt.tick_params(right=False, top=False, axis='both', direction='out')
    plt.xlim(-1.1,1.1)
    plt.ylim(-10.0,10.0)
    plt.xlabel('x')
    plt.ylabel('y')
    plt.title('Random Line Scatter Data')

In [91]:
plot_random_line(5.0, -1.0, 2.0, 50)



In [92]:
assert True # use this cell to grade the plot_random_line function

Use interact to explore the plot_random_line function using:

  • m: a float valued slider from -10.0 to 10.0 with steps of 0.1.
  • b: a float valued slider from -5.0 to 5.0 with steps of 0.1.
  • sigma: a float valued slider from 0.0 to 5.0 with steps of 0.01.
  • size: an int valued slider from 10 to 100 with steps of 10.
  • color: a dropdown with options for red, green and blue.

In [93]:
interact(plot_random_line, m=(-10.0,10.0,0.1), b=(-5.0,5.0,0.1), sigma=(0.0,5.0,0.01), size=(10,100,10), color={'red':'r',
                                                                                                                'green':'g',
                                                                                                               'blue':'b'})



In [ ]:
#### assert True # use this cell to grade the plot_random_line interact