Description

  • Time to make a simple SIP data simulation with the dataset that you alreadly created

Make sure you have created the dataset before trying to run this notebook

Setting variables

  • "workDir" is the path to the working directory for this analysis (where the files will be download to)
    • NOTE: MAKE SURE to modify this path to the directory where YOU want to run the example.
  • "nprocs" is the number of processors to use (3 by default, since only 3 genomes). Change this if needed.

In [57]:
workDir = '../../t/SIPSim_example/'
nprocs = 3

Init


In [58]:
import os

In [59]:
# Note: you will need to install `rpy2.ipython` and the necessary R packages (see next cell)
%load_ext rpy2.ipython


The rpy2.ipython extension is already loaded. To reload it, use:
  %reload_ext rpy2.ipython

In [60]:
%%R
library(ggplot2)
library(dplyr)
library(tidyr)

In [61]:
workDir = os.path.abspath(workDir)
if not os.path.isdir(workDir):
    os.makedirs(workDir)
%cd $workDir    

genomeDir = os.path.join(workDir, 'genomes_rn')


/home/nick/notebook/SIPSim/t/SIPSim_example

Experimental design

  • How many gradients?
  • Which are labeled treatments & which are controls?
  • For this tutorial, we'll keep things simple and just simulate one control & one treatment
    • For the labeled treatment, 34% of the taxa (1 of 3) will incorporate 50% isotope

The script below ("SIPSim incorpConfigExample") is helpful for making simple experimental designs


In [62]:
%%bash
source activate SIPSim

# creating example config
SIPSim incorp_config_example \
  --percTaxa 34 \
  --percIncorpUnif 50 \
  --n_reps 1 \
  > incorp.config

In [63]:
!cat incorp.config


[1]
    # baseline: no incorporation
    treatment = control
    
    [[intraPopDist 1]]
        distribution = uniform
        
        [[[start]]]
            
            [[[[interPopDist 1]]]]
                distribution = uniform
                start = 0
                end = 0
        
        [[[end]]]
            
            [[[[interPopDist 1]]]]
                distribution = uniform
                start = 0
                end = 0
[2]
    # 'treatment' community: possible incorporation
    treatment = labeled
    max_perc_taxa_incorp = 34
    
    [[intraPopDist 1]]
        distribution = uniform
        
        [[[start]]]
            [[[[interPopDist 1]]]]
                start = 50
                distribution = uniform
                end = 50
        
        [[[end]]]
            [[[[interPopDist 1]]]]
                start = 50
                distribution = uniform
                end = 50
    

Pre-fractionation communities

  • What is the relative abundance of taxa in the pre-fractionation samples?

In [64]:
%%bash
source activate SIPSim

SIPSim communities \
    --config incorp.config \
    ./genomes_rn/genome_index.txt \
    > comm.txt

In [65]:
!cat comm.txt


library	taxon_name	rel_abund_perc	rank
1	Escherichia_coli_1303	68.253282118	1
1	Clostridium_ljungdahlii_DSM_13528	28.910126208	2
1	Streptomyces_pratensis_ATCC_33331	2.836591673	3
2	Escherichia_coli_1303	92.501402170	1
2	Clostridium_ljungdahlii_DSM_13528	6.504836572	2
2	Streptomyces_pratensis_ATCC_33331	0.993761258	3

Note: "library" = gradient

Simulating gradient fractions

  • BD size ranges for each fraction (& start/end of the total BD range)

In [66]:
%%bash 
source activate SIPSim

SIPSim gradient_fractions \
    --BD_min 1.67323 \
    --BD_max 1.7744 \
    comm.txt \
    > fracs.txt

In [67]:
!head -n 6 fracs.txt


library	fraction	BD_min	BD_max	fraction_size
1	1	1.673	1.678	0.005
1	2	1.678	1.681	0.003
1	3	1.681	1.685	0.004
1	4	1.685	1.688	0.003
1	5	1.688	1.691	0.003

Simulating fragments

  • Simulating shotgun-fragments
  • Fragment length distribution: skewed-normal

Primer sequences (wait... what?)

  • If you were to simulate amplicons, instead of shotgun fragments, you can use something like the following:

In [68]:
# primers = """>515F
# GTGCCAGCMGCCGCGGTAA
# >806R
# GGACTACHVGGGTWTCTAAT
# """

# F = os.path.join(workDir, '515F-806R.fna')
# with open(F, 'wb') as oFH:
#     oFH.write(primers)
    
# print 'File written: {}'.format(F)

Simulation


In [69]:
%%bash -s $genomeDir
source activate SIPSim 

# skewed-normal
SIPSim fragments \
    $1/genome_index.txt \
    --fp $1 \
    --fld skewed-normal,9000,2500,-5 \
    --flr None,None \
    --nf 1000 \
    --debug \
    --tbl \
    > shotFrags.txt


Processing: "Clostridium_ljungdahlii_DSM_13528"
  Genome name: Clostridium_ljungdahlii_DSM_13528
  Genome length (bp): 4630065
  Number of amplicons: None
  Number of fragments simulated: 1000
Processing: "Escherichia_coli_1303"
  Genome name: Escherichia_coli_1303
  Genome length (bp): 4948797
  Number of amplicons: None
  Number of fragments simulated: 1000
Processing: "Streptomyces_pratensis_ATCC_33331"
  Genome name: Streptomyces_pratensis_ATCC_33331
  Genome length (bp): 7337497
  Number of amplicons: None
  Number of fragments simulated: 1000

In [70]:
!head -n 5 shotFrags.txt
!tail -n 5 shotFrags.txt


taxon_name	scaffoldID	fragStart	fragLength	fragGC
Clostridium_ljungdahlii_DSM_13528	NC_014328_1_Clostridium_ljungdahlii_DSM_13528	1296246	5561	33.26739795
Clostridium_ljungdahlii_DSM_13528	NC_014328_1_Clostridium_ljungdahlii_DSM_13528	4068528	5412	33.2779009608
Clostridium_ljungdahlii_DSM_13528	NC_014328_1_Clostridium_ljungdahlii_DSM_13528	2495157	7520	32.6329787234
Clostridium_ljungdahlii_DSM_13528	NC_014328_1_Clostridium_ljungdahlii_DSM_13528	897751	7963	31.2193896773
Streptomyces_pratensis_ATCC_33331	NC_016114_1_Streptomyces_pratensis_ATCC_33331	250918	8676	70.7353619179
Streptomyces_pratensis_ATCC_33331	NC_016114_1_Streptomyces_pratensis_ATCC_33331	724379	4989	72.2589697334
Streptomyces_pratensis_ATCC_33331	NC_016114_1_Streptomyces_pratensis_ATCC_33331	7086109	7293	69.5598519128
Streptomyces_pratensis_ATCC_33331	NC_016114_1_Streptomyces_pratensis_ATCC_33331	3183927	7265	72.6496902959
Streptomyces_pratensis_ATCC_33331	NC_016114_1_Streptomyces_pratensis_ATCC_33331	6176829	5531	73.9106852287

Plotting fragments


In [71]:
%%R -w 700 -h 350

df = read.delim('shotFrags.txt')

p = ggplot(df, aes(fragGC, fragLength, color=taxon_name)) +
    geom_density2d() +
    scale_color_discrete('Taxon') +
    labs(x='Fragment G+C', y='Fragment length (bp)') +
    theme_bw() +
    theme(
        text = element_text(size=16)
    )
plot(p)


Note: for information on what's going on in this config file, use the command: SIPSim isotope_incorp -h

Converting fragments to a 2d-KDE

  • Estimating the joint-probabilty for fragment G+C & length

In [72]:
%%bash 
source activate SIPSim

SIPSim fragment_KDE \
    shotFrags.txt \
    > shotFrags_kde.pkl

In [73]:
!ls -thlc shotFrags_kde.pkl


-rw-rw-r-- 1 nick nick 49K Jul 13 14:56 shotFrags_kde.pkl
  • Note: The generated list of KDEs (1 per taxon per gradient) are in a binary file format
    • To get a table of length/G+C values, use the command: SIPSim KDE_sample

Adding diffusion

  • Simulating the BD distribution of fragments as Gaussian distributions.
    • One Gaussian distribution per homogeneous set of DNA molecules (same G+C and length)

See the README if you get MKL errors with the next step and re-run the fragment KDE generation step


In [74]:
%%bash 
source activate SIPSim

SIPSim diffusion \
    shotFrags_kde.pkl \
    --np 3 \
    > shotFrags_kde_dif.pkl


Index size: 90508
Processing: Escherichia_coli_1303
Processing: Clostridium_ljungdahlii_DSM_13528
Processing: Streptomyces_pratensis_ATCC_33331

In [75]:
!ls -thlc shotFrags_kde_dif.pkl


-rw-rw-r-- 1 nick nick 12M Jul 13 14:56 shotFrags_kde_dif.pkl

Plotting fragment distribution w/ and w/out diffusion

Making a table of fragment values from KDEs


In [76]:
n = 100000

In [77]:
%%bash -s $n
source activate SIPSim

SIPSim KDE_sample -n $1 shotFrags_kde.pkl > shotFrags_kde.txt
SIPSim KDE_sample -n $1 shotFrags_kde_dif.pkl > shotFrags_kde_dif.txt

ls -thlc shotFrags_kde*.txt


-rw-rw-r-- 1 nick nick 4.2M Jul 13 14:56 shotFrags_kde_dif.txt
-rw-rw-r-- 1 nick nick 4.2M Jul 13 14:56 shotFrags_kde.txt

Plotting

  • plotting KDE with or without diffusion added

In [78]:
%%R
df1 = read.delim('shotFrags_kde.txt', sep='\t')
df2 = read.delim('shotFrags_kde_dif.txt', sep='\t')

df1$data = 'no diffusion'
df2$data = 'diffusion'
df = rbind(df1, df2) %>%
    gather(Taxon, BD, Clostridium_ljungdahlii_DSM_13528, 
           Escherichia_coli_1303, Streptomyces_pratensis_ATCC_33331) %>%
    mutate(Taxon = gsub('_(ATCC|DSM)', '\n\\1', Taxon))

df %>% head(n=3)


  libID         data                              Taxon       BD
1     1 no diffusion Clostridium_ljungdahlii\nDSM_13528 1.688926
2     1 no diffusion Clostridium_ljungdahlii\nDSM_13528 1.690790
3     1 no diffusion Clostridium_ljungdahlii\nDSM_13528 1.688911

In [79]:
%%R -w 800 -h 300

p = ggplot(df, aes(BD, fill=data)) +
    geom_density(alpha=0.25) +
    facet_wrap( ~ Taxon) +    
    scale_fill_discrete('') +
    theme_bw() +
    theme(
        text=element_text(size=16),
        axis.title.y = element_text(vjust=1),
        axis.text.x = element_text(angle=50, hjust=1)
        )

plot(p)


Adding diffusive boundary layer (DBL) effects

  • 'smearing' effects

In [80]:
%%bash 
source activate SIPSim

SIPSim DBL \
    shotFrags_kde_dif.pkl \
    --np 3 \
    > shotFrags_kde_dif_DBL.pkl


DBL_index file written: "DBL_index.txt"
Processing: Clostridium_ljungdahlii_DSM_13528
Processing: Streptomyces_pratensis_ATCC_33331
Processing: Escherichia_coli_1303

In [81]:
# viewing DBL logs
!ls -thlc *pkl


-rw-rw-r-- 1 nick nick 12M Jul 13 14:56 shotFrags_kde_dif_DBL.pkl
-rw-rw-r-- 1 nick nick 12M Jul 13 14:56 shotFrags_kde_dif.pkl
-rw-rw-r-- 1 nick nick 49K Jul 13 14:56 shotFrags_kde.pkl
-rw-rw-r-- 1 nick nick 23M Jul 13 14:55 shotFrags_KDE_dif_DBL_inc.pkl

Adding isotope incorporation

  • Using the config file produced in the Experimental Design section

In [82]:
%%bash
source activate SIPSim

SIPSim isotope_incorp \
    --comm comm.txt \
    --np 3 \
    shotFrags_kde_dif_DBL.pkl \
    incorp.config \
    > shotFrags_KDE_dif_DBL_inc.pkl


Loading KDE object...
Processing library: 1
Processing: Clostridium_ljungdahlii_DSM_13528
Processing: Escherichia_coli_1303
Processing: Streptomyces_pratensis_ATCC_33331
Processing library: 2
WARNING: config library 2 not found in KDEs.Using a different KDE object
Processing: Clostridium_ljungdahlii_DSM_13528
Processing: Escherichia_coli_1303
Processing: Streptomyces_pratensis_ATCC_33331
File written: BD-shift_stats.txt

In [83]:
!ls -thlc *.pkl


-rw-rw-r-- 1 nick nick 23M Jul 13 14:56 shotFrags_KDE_dif_DBL_inc.pkl
-rw-rw-r-- 1 nick nick 12M Jul 13 14:56 shotFrags_kde_dif_DBL.pkl
-rw-rw-r-- 1 nick nick 12M Jul 13 14:56 shotFrags_kde_dif.pkl
-rw-rw-r-- 1 nick nick 49K Jul 13 14:56 shotFrags_kde.pkl

Note: statistics on how much isotope was incorporated by each taxon are listed in "BD-shift_stats.txt"


In [84]:
%%R
df = read.delim('BD-shift_stats.txt', sep='\t')
df


  library                             taxon          min          q25
1       1 Clostridium_ljungdahlii_DSM_13528 1.354472e-14 1.665335e-14
2       1             Escherichia_coli_1303 1.865175e-14 1.909584e-14
3       1 Streptomyces_pratensis_ATCC_33331 2.398082e-14 2.553513e-14
4       2 Clostridium_ljungdahlii_DSM_13528 0.000000e+00 0.000000e+00
5       2             Escherichia_coli_1303 1.800000e-02 1.800000e-02
6       2 Streptomyces_pratensis_ATCC_33331 0.000000e+00 0.000000e+00
          mean       median          q75          max
1 1.976999e-14 1.976197e-14 2.287059e-14 2.597922e-14
2 1.961649e-14 1.953993e-14 1.998401e-14 2.042810e-14
3 2.695465e-14 2.686740e-14 2.842171e-14 2.997602e-14
4 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
5 1.800000e-02 1.800000e-02 1.800000e-02 1.800000e-02
6 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

Making an OTU table

  • Number of amplicon-fragment in each fraction in each gradient
  • Assuming a total pre-fractionation community size of 1e7

In [85]:
%%bash
source activate SIPSim

SIPSim OTU_table \
    --abs 1e7 \
    --np 3 \
    shotFrags_KDE_dif_DBL_inc.pkl \
    comm.txt \
    fracs.txt \
    > OTU.txt


Loading files...
Simulating OTUs...
Processing library: "1"
  Processing taxon: "Escherichia_coli_1303"
   taxon abs-abundance:  6825328
  Processing taxon: "Clostridium_ljungdahlii_DSM_13528"
   taxon abs-abundance:  2891013
  Processing taxon: "Streptomyces_pratensis_ATCC_33331"
   taxon abs-abundance:  283659
Processing library: "2"
  Processing taxon: "Escherichia_coli_1303"
   taxon abs-abundance:  9250140
  Processing taxon: "Clostridium_ljungdahlii_DSM_13528"
   taxon abs-abundance:  650484
  Processing taxon: "Streptomyces_pratensis_ATCC_33331"
   taxon abs-abundance:  99376

In [86]:
!head -n 7 OTU.txt


library	taxon	fraction	BD_min	BD_mid	BD_max	count	rel_abund
1	Clostridium_ljungdahlii_DSM_13528	-inf-1.673	-inf	1.672	1.672	1075	0.484452456061
1	Clostridium_ljungdahlii_DSM_13528	1.673-1.678	1.673	1.675	1.678	984	0.704871060172
1	Clostridium_ljungdahlii_DSM_13528	1.678-1.681	1.678	1.679	1.681	7069	0.968754282582
1	Clostridium_ljungdahlii_DSM_13528	1.681-1.685	1.681	1.683	1.685	135783	0.994914894085
1	Clostridium_ljungdahlii_DSM_13528	1.685-1.688	1.685	1.687	1.688	518595	0.996690479073
1	Clostridium_ljungdahlii_DSM_13528	1.688-1.691	1.688	1.69	1.691	980471	0.993720272392

Plotting fragment count distributions


In [87]:
%%R -h 350 -w 750

df = read.delim('OTU.txt', sep='\t')

p = ggplot(df, aes(BD_mid, count, fill=taxon)) +
    geom_area(stat='identity', position='dodge', alpha=0.5) +
    scale_x_continuous(expand=c(0,0)) +
    labs(x='Buoyant density') +
    labs(y='Shotgun fragment counts') +
    facet_grid(library ~ .) +
    theme_bw() +
    theme( 
        text = element_text(size=16),
        axis.title.y = element_text(vjust=1),        
        axis.title.x = element_blank()
    )
plot(p)


Notes:

  • This plot represents the theoretical number of amplicon-fragments at each BD across each gradient.
    • Derived from subsampling the fragment BD proability distributions generated in earlier steps.
  • The fragment BD distribution of one of the 3 taxa should have shifted in Gradient 2 (the treatment gradient).
  • The fragment BD distributions of the other 2 taxa should be approx. the same between the two gradients.

Viewing fragment counts as relative quantities


In [88]:
%%R -h 350 -w 750

p = ggplot(df, aes(BD_mid, count, fill=taxon)) +
    geom_area(stat='identity', position='fill') +
    scale_x_continuous(expand=c(0,0)) +
    scale_y_continuous(expand=c(0,0)) +
    labs(x='Buoyant density') +
    labs(y='Shotgun fragment counts') +
    facet_grid(library ~ .) +
    theme_bw() +
    theme( 
        text = element_text(size=16),
        axis.title.y = element_text(vjust=1),        
        axis.title.x = element_blank()
    )
plot(p)


Adding effects of PCR

  • This will alter the fragment counts based on the PCR kinetic model of:

    Suzuki MT, Giovannoni SJ. (1996). Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol 62:625-630.


In [89]:
%%bash
source activate SIPSim

SIPSim OTU_PCR OTU.txt > OTU_PCR.txt

In [90]:
!head -n 5 OTU_PCR.txt
!tail -n 5 OTU_PCR.txt


library	taxon	fraction	BD_min	BD_mid	BD_max	count	rel_abund
1	Clostridium_ljungdahlii_DSM_13528	-inf-1.673	-inf	1.672	1.672	8466486	0.423324319678
1	Clostridium_ljungdahlii_DSM_13528	1.673-1.678	1.673	1.675	1.678	9469222	0.473461104378
1	Clostridium_ljungdahlii_DSM_13528	1.678-1.681	1.678	1.679	1.681	13571521	0.678576027723
1	Clostridium_ljungdahlii_DSM_13528	1.681-1.685	1.681	1.683	1.685	14776381	0.738819047776
2	Streptomyces_pratensis_ATCC_33331	1.757-1.761	1.757	1.759	1.761	3256167	0.162808343771
2	Streptomyces_pratensis_ATCC_33331	1.761-1.764	1.761	1.762	1.764	0	0.0
2	Streptomyces_pratensis_ATCC_33331	1.764-1.770	1.764	1.767	1.77	2373725	0.118686263969
2	Streptomyces_pratensis_ATCC_33331	1.770-1.774	1.77	1.772	1.774	4147246	0.207362287667
2	Streptomyces_pratensis_ATCC_33331	1.774-inf	1.775	1.775	inf	4686423	0.234321138305

Notes

  • The table is in the same format as with the original OTU table, but the counts and relative abundances should be altered.

Simulating sequencing

  • Sampling from the OTU table

In [91]:
%%bash
source activate SIPSim

SIPSim OTU_subsample OTU_PCR.txt > OTU_PCR_sub.txt

In [92]:
!head -n 5 OTU_PCR_sub.txt


library	fraction	taxon	BD_min	BD_mid	BD_max	count	rel_abund
1	-inf-1.673	Clostridium_ljungdahlii_DSM_13528	-inf	1.672	1.672	5862	0.41433418151
1	1.673-1.678	Clostridium_ljungdahlii_DSM_13528	1.673	1.675	1.678	8144	0.481352325788
1	1.678-1.681	Clostridium_ljungdahlii_DSM_13528	1.678	1.679	1.681	17007	0.679926438252
1	1.681-1.685	Clostridium_ljungdahlii_DSM_13528	1.681	1.683	1.685	9657	0.734763752568

Notes

  • The table is in the same format as with the original OTU table, but the counts and relative abundances should be altered.

Plotting


In [93]:
%%R -h 350 -w 750

df = read.delim('OTU_PCR_sub.txt', sep='\t')


p = ggplot(df, aes(BD_mid, rel_abund, fill=taxon)) +
    geom_area(stat='identity', position='fill') +
    scale_x_continuous(expand=c(0,0)) +
    scale_y_continuous(expand=c(0,0)) +
    labs(x='Buoyant density') +
    labs(y='Taxon relative abundances') +
    facet_grid(library ~ .) +
    theme_bw() +
    theme( 
        text = element_text(size=16),
        axis.title.y = element_text(vjust=1),        
        axis.title.x = element_blank()
    )
plot(p)


Misc

A 'wide' OTU table

  • If you want to reformat the OTU table to a more standard 'wide' format (as used in Mothur or QIIME):

In [94]:
%%bash
source activate SIPSim

SIPSim OTU_wide_long -w \
    OTU_PCR_sub.txt \
    > OTU_PCR_sub_wide.txt

In [95]:
!head -n 4 OTU_PCR_sub_wide.txt


taxon	1__-inf-1.673	1__1.673-1.678	1__1.678-1.681	1__1.681-1.685	1__1.685-1.688	1__1.688-1.691	1__1.691-1.695	1__1.695-1.698	1__1.698-1.700	1__1.700-1.701	1__1.701-1.706	1__1.706-1.711	1__1.711-1.714	1__1.714-1.719	1__1.719-1.723	1__1.723-1.726	1__1.726-1.729	1__1.729-1.733	1__1.733-1.737	1__1.737-1.743	1__1.743-1.748	1__1.748-1.754	1__1.754-1.758	1__1.758-1.762	1__1.762-1.764	1__1.764-1.769	1__1.769-1.774	1__1.774-inf	2__-inf-1.673	2__1.673-1.676	2__1.676-1.679	2__1.679-1.682	2__1.682-1.683	2__1.683-1.686	2__1.686-1.687	2__1.687-1.690	2__1.690-1.695	2__1.695-1.701	2__1.701-1.706	2__1.706-1.709	2__1.709-1.712	2__1.712-1.717	2__1.717-1.720	2__1.720-1.723	2__1.723-1.728	2__1.728-1.731	2__1.731-1.738	2__1.738-1.742	2__1.742-1.748	2__1.748-1.750	2__1.750-1.753	2__1.753-1.757	2__1.757-1.761	2__1.761-1.764	2__1.764-1.770	2__1.770-1.774	2__1.774-inf
Clostridium_ljungdahlii_DSM_13528	5862	8144	17007	9657	21963	14036	17167	9246	9017	9862	5614	4053	3199	1872	1732	2479	3130	1616	1564	3670	4557	10329	7487	10113	9165	10417	6893	4079	9272	6392	15337	12439	14250	12147	14685	14996	18042	12109	4568	8219	8292	2549	810	273	209	56	194	1203	2939	4730	4073	8853	6321	8377	9516	6888	2839
Escherichia_coli_1303	6197	6295	8006	3117	6307	4637	7212	6735	10821	14835	12669	17948	19208	13957	12065	7349	8095	2964	3036	4573	6246	11653	6364	11246	11855	12350	11452	12231	11730	7479	14461	6619	6076	3321	3123	3032	4292	4594	4274	14313	18945	12104	16580	16720	23626	15140	21221	11106	10054	14644	10206	16293	11684	17544	14749	14489	11961
Streptomyces_pratensis_ATCC_33331	2089	2480	0	369	483	150	221	104	38	81	168	179	675	2660	7375	11155	19695	11506	8952	8535	3843	6646	3051	5421	4164	4737	4326	6756	3229	3210	3746	1429	0	527	0	305	385	474	544	1240	1702	2058	3816	4775	8344	5865	9006	4382	3237	4647	2785	4184	3342	0	3225	5510	4639

SIP metadata

  • If you want to make a table of SIP sample metadata

In [96]:
%%bash
source activate SIPSim

SIPSim OTU_sample_data \
    OTU_PCR_sub.txt \
    > OTU_PCR_sub_meta.txt

In [97]:
!head OTU_PCR_sub_meta.txt


sample	library	fraction	BD_min	BD_max	BD_mid
1__-inf-1.673	1	-inf-1.673	-inf	1.673	-inf
1__1.673-1.678	1	1.673-1.678	1.673	1.678	1.6755
1__1.678-1.681	1	1.678-1.681	1.678	1.681	1.6795
1__1.681-1.685	1	1.681-1.685	1.681	1.685	1.683
1__1.685-1.688	1	1.685-1.688	1.685	1.688	1.6865
1__1.688-1.691	1	1.688-1.691	1.688	1.691	1.6895
1__1.691-1.695	1	1.691-1.695	1.691	1.695	1.693
1__1.695-1.698	1	1.695-1.698	1.695	1.698	1.6965
1__1.698-1.700	1	1.698-1.700	1.698	1.700	1.699

Other SIPSim commands

SIPSim -l will list all available SIPSim commands


In [98]:
%%bash
source activate SIPSim

SIPSim -l


#-- Commands --#
BD_shift
communities
DBL
deltaBD
diffusion
fragment_KDE
fragment_KDE_cat
fragment_parse
fragments
genome_download
genome_index
genome_rename
gradient_fractions
HRSIP
incorp_config_example
isotope_incorp
KDE_bandwidth
KDE_info
KDE_parse
KDE_plot
KDE_sample
KDE_select_taxa
OTU_add_error
OTU_PCR
OTU_sample_data
OTU_subsample
OTU_sum
OTU_table
OTU_wide_long
qSIP
qSIP_atom_excess
tree_sim

In [ ]: