Goal

  • Analyze results from microDivBetaDiv simulation

Var


In [55]:
workDir = '/ebio/abt3_projects/methanogen_host_evo/SIPSim_pt2/data/bac_genome1147/microBetaDiv/'

Init


In [56]:
library(dplyr)
library(tidyr)
library(ggplot2)

as.Num = function(x) x %>% as.character %>% as.numeric

In [57]:
# classifying true positives, neg, ...
clsfy = function(guess,known){
    if(is.na(guess) | is.na(known)){
        return(NA)
        }
    if(guess == TRUE){
        if(guess == known){
            return('True positive')
            } else {
            return('False positive')
            }
        } else
    if(guess == FALSE){
        if(guess == known){
            return('True negative')
            } else {
            return('False negative')
            }
        } else {
        stop('Error: true or false needed')
        }
    }

Load


In [58]:
# files on simulation accuracy
files = list.files(path=workDir, pattern='*-cMtx_byClass.txt', full.names=TRUE)
files


  1. '/ebio/abt3_projects/methanogen_host_evo/SIPSim_pt2/data/bac_genome1147/microBetaDiv//DESeq2_multi-cMtx_byClass.txt'
  2. '/ebio/abt3_projects/methanogen_host_evo/SIPSim_pt2/data/bac_genome1147/microBetaDiv//DESeq2-cMtx_byClass.txt'
  3. '/ebio/abt3_projects/methanogen_host_evo/SIPSim_pt2/data/bac_genome1147/microBetaDiv//heavy-cMtx_byClass.txt'
  4. '/ebio/abt3_projects/methanogen_host_evo/SIPSim_pt2/data/bac_genome1147/microBetaDiv//qSIP-cMtx_byClass.txt'

In [59]:
# combining files
df_byClass = list()
for (f in files){
    ff = strsplit(f, '/') %>% unlist
    fff = ff[length(ff)]
    df_byClass[[fff]] = read.delim(f, sep='\t')
}

df_byClass = do.call(rbind, df_byClass)
df_byClass$file = gsub('\\.[0-9]+$', '', rownames(df_byClass))
df_byClass$method = gsub('-.+', '', df_byClass$file)
rownames(df_byClass) = 1:nrow(df_byClass)

df_byClass %>% head(n=3)


libraryvariablesvaluesshared_percperm_percrepfilemethod
12 Sensitivity 0.717171717171717 80 0 1 DESeq2_multi-cMtx_byClass.txtDESeq2_multi
22 Specificity 0.967403958090803 80 0 1 DESeq2_multi-cMtx_byClass.txtDESeq2_multi
32 Pos Pred Value 0.717171717171717 80 0 1 DESeq2_multi-cMtx_byClass.txtDESeq2_multi

In [60]:
# renaming methods
rename = data.frame(method = c('DESeq2', 'DESeq2_multi', 'heavy', 'qSIP'), 
                   method_new = c('HR-SIP', 'MW-HR-SIP', 'Heavy-SIP', 'q-SIP'))

df_byClass = inner_join(df_byClass, rename, c('method'='method')) %>%
    select(-method) %>%
    rename('method' = method_new) 

df_byClass %>% head(n=3)


Warning message in inner_join_impl(x, y, by$x, by$y, suffix$x, suffix$y):
“joining character vector and factor, coercing into character vector”
libraryvariablesvaluesshared_percperm_percrepfilemethod
12 Sensitivity 0.717171717171717 80 0 1 DESeq2_multi-cMtx_byClass.txtMW-HR-SIP
22 Specificity 0.967403958090803 80 0 1 DESeq2_multi-cMtx_byClass.txtMW-HR-SIP
32 Pos Pred Value 0.717171717171717 80 0 1 DESeq2_multi-cMtx_byClass.txtMW-HR-SIP

Incorp-call accuracy


In [61]:
# summarize by SIPSim rep & library rep
df_byClass.s = df_byClass %>%
    group_by(method, shared_perc, perm_perc, variables) %>%
    summarize(mean_value = mean(values, na.rm=TRUE),
              sd_value = sd(values, na.rm=TRUE))

# plotting
options(repr.plot.width=8, repr.plot.height=5)
p = ggplot(df_byClass.s, aes(variables, mean_value, color=method,
                         ymin=mean_value-sd_value,
                         ymax=mean_value+sd_value)) +
    geom_pointrange(alpha=0.8, size=0.2) +
    labs(y='Value') +
    facet_grid(perm_perc ~ shared_perc) +
    theme_bw() +
    theme(
        axis.title.x = element_blank(),
        axis.text.x = element_text(angle=65, hjust=1)
    )
plot(p)



In [62]:
# summarize by SIPSim rep & library rep
vars = c('Balanced Accuracy', 'Sensitivity', 'Specificity')
df_byClass.s.f = df_byClass.s %>%
    filter(variables %in% vars) %>%
    ungroup() %>%
    mutate(perm_perc = perm_perc %>% as.character,
           perm_perc = perm_perc %>% reorder(perm_perc %>% as.numeric))


# plotting
options(repr.plot.width=9, repr.plot.height=5)
p.pnt = ggplot(df_byClass.s.f, aes(shared_perc, mean_value, 
                           color=perm_perc, 
                           group=perm_perc,
                           ymin=mean_value-sd_value,
                           ymax=mean_value+sd_value)) +
    geom_point(alpha=0.8) +
    geom_linerange(alpha=0.8, size=0.5) +
    geom_line() +
    scale_color_discrete('% of rank\nabundances\npermuted') +
    labs(x='% taxa shared among pre-fractionation communities') +
    facet_grid(variables ~ method) +
    theme_bw() +
    theme(
        axis.title.y = element_blank()
    )
plot(p.pnt)



In [63]:
outF = file.path(workDir, 'microBetaDiv_acc.pdf')
ggsave(outF, p.pnt, width=10, height=6)
cat('File written:', outF, '\n')


File written: /ebio/abt3_projects/methanogen_host_evo/SIPSim_pt2/data/bac_genome1147/microBetaDiv//microBetaDiv_acc.pdf 

In [64]:
outF = file.path(workDir, 'microBetaDiv_acc.jpeg')
ggsave(outF, p.pnt, width=10, height=6)
cat('File written:', outF, '\n')


File written: /ebio/abt3_projects/methanogen_host_evo/SIPSim_pt2/data/bac_genome1147/microBetaDiv//microBetaDiv_acc.jpeg 

Sensitivity ~ abundance

  • sensitivity = true_positive / (true_positive + false_negative)
  • sensitivity = true_incorporators_called_incorporators / (true_incorporators)

Load true BD shift


In [65]:
BDshift_files = list.files(path=workDir, pattern='BD-shift_stats.txt', full.names=TRUE, recursive=TRUE)
BDshift_files %>% length %>% print


[1] 250

In [ ]:
df_shift = list()
for(F in BDshift_files){
    tmp = read.delim(F, sep='\t') 
    FF = strsplit(F, '/') %>% unlist
    FFl = length(FF)
    tmp$shared_perc = FF[FFl-3]
    tmp$perm_perc = FF[FFl-2]
    tmp$rep = FF[FFl-1]
    tmp$file = FF[FFl]
    df_shift[[F]] = tmp
}

df_shift = do.call(rbind, df_shift)
rownames(df_shift) = 1:nrow(df_shift)

df_shift = df_shift %>%
    filter(library %in% c(2,4,6)) %>%
    group_by(taxon, shared_perc, perm_perc, rep) %>%
    summarize(median = median(median)) %>%
    ungroup() %>%
    rename('median_true_BD_shift' = median) %>%
    mutate(true_incorporator = ifelse(median_true_BD_shift > 0.002, TRUE, FALSE))

# status
df_shift %>% nrow %>% print
df_shift %>% head(n=3)

Loading original taxon abundances


In [ ]:
comm_files = list.files(path=workDir, pattern='comm.txt', full.names=TRUE, recursive=TRUE)
comm_files %>% length %>% print

In [ ]:
df_comm = list()
for(F in comm_files){
    tmp = read.delim(F, sep='\t') 
    FF = strsplit(F, '/') %>% unlist
    FFl = length(FF)
    tmp$shared_perc = FF[FFl-3]
    tmp$perm_perc = FF[FFl-2]
    tmp$rep = FF[FFl-1]
    tmp$file = FF[FFl]
    df_comm[[F]] = tmp
}

df_comm = do.call(rbind, df_comm)
rownames(df_comm) = 1:nrow(df_comm)


# mean abund for libraries
df_comm = df_comm %>%
    rename('taxon' = taxon_name) %>%
    group_by(taxon, shared_perc, perm_perc, rep) %>%
    summarize(mean_rel_abund_perc = mean(rel_abund_perc),
              mean_rank_abund = mean(rank)) %>%
    ungroup()

# status
df_comm %>% nrow %>% print
df_comm %>% head(n=3)

Load MW-HR-SIP incorp tables


In [ ]:
MW_files = list.files(path=workDir, pattern='_MW_DESeq2_incorp.txt', full.names=TRUE, recursive=TRUE)
MW_files %>% length %>% print

In [ ]:
df_MW = list()
#for(F in MW_files){
for(F in MW_files){
    tmp = read.delim(F, sep='\t') 
    FF = strsplit(F, '/') %>% unlist
    FFl = length(FF)
    tmp$shared_perc = FF[FFl-3]
    tmp$perm_perc = FF[FFl-2]
    tmp$rep = FF[FFl-1]
    tmp$file = FF[FFl]
    df_MW[[F]] = tmp
}

df_MW = do.call(rbind, df_MW)
rownames(df_MW) = 1:nrow(df_MW)

# status
df_MW %>% nrow %>% print
df_MW %>% head(n=3)

group by abundance and calculate sensitivity


In [ ]:
join_vars = c('taxon' = 'taxon',
              'shared_perc'='shared_perc',
              'perm_perc'='perm_perc',
              'rep'='rep')

# joining tables
df_MW %>% nrow %>% print
df.j = df_MW %>% 
    left_join(df_shift, join_vars)

df.j %>% nrow %>% print
df.j = df.j %>% 
    left_join(df_comm, join_vars)

# status
df.j %>% nrow %>% print
df.j %>% head(n=3)

In [ ]:
# calling true_pos + false_neg
df.j = df.j %>%
    mutate(incorp_cls = mapply(clsfy, incorp, true_incorporator)) 

# status
df.j %>% nrow %>% print
df.j$incorp_cls %>% table %>% print

In [ ]:
# function for calculating sensitivity
calc_sensitivity = function(incorp_cls){
    tp = sum(incorp_cls == 'True positive')
    fn = sum(incorp_cls == 'False negative')
    x = tp / (tp + fn)
    ifelse(is.na(x), 0, x)
}

# grouping by abundance and calculating sensitivity
df.j.s = df.j %>%
    mutate(n_group = ntile(log10(mean_rel_abund_perc), 10)) %>%
    group_by(n_group, shared_perc, perm_perc, rep) %>%
    summarize(min_abund = min(mean_rel_abund_perc, na.rm=TRUE),
              mean_abund = mean(mean_rel_abund_perc, na.rm=TRUE),
              max_abund = max(mean_rel_abund_perc, na.rm=TRUE),
              sensitivity = calc_sensitivity(incorp_cls)) %>%
    group_by(n_group, shared_perc, perm_perc) %>%
    summarize(mean_abund = mean(mean_abund),
              mean_sensitivity = mean(sensitivity),
              sd_sensitivity = sd(sensitivity)) %>%
    ungroup() %>%
    mutate(shared_perc = shared_perc %>% as.character,
           shared_perc = shared_perc %>% reorder(shared_perc %>% as.numeric),
           perm_perc = perm_perc %>% as.character,
           perm_perc = perm_perc %>% reorder(perm_perc %>% as.numeric))

# status
df.j.s %>% head(n=3)

In [ ]:
# plotting
options(repr.plot.width=8, repr.plot.height=4)
p_sens_abund = ggplot(df.j.s, aes(mean_abund, mean_sensitivity, 
                                  color=perm_perc,
                                  ymin=mean_sensitivity-sd_sensitivity,
                                  ymax=mean_sensitivity+sd_sensitivity)) +
    geom_line(alpha=0.7) +
    geom_linerange(alpha=0.7) +
    geom_point(alpha=0.7) +
    scale_x_log10(breaks=c(1e-3, 1e-2, 1e-1, 1e0)) +
    scale_color_discrete('% of rank\nabundances\npermuted') +
    labs(x='Mean % abundance',
         y='Sensitivity') +
    facet_wrap(~ shared_perc) +
    theme_bw()

p_sens_abund

In [ ]:
outF = file.path(workDir, 'microBetaDiv_sens-abund.pdf')
ggsave(outF, p_sens_abund, width=10, height=5)
cat('File written:', outF, '\n')

In [ ]:
outF = file.path(workDir, 'microBetaDiv_sens-abund.jpeg')
ggsave(outF, p_sens_abund, width=10, height=5)
cat('File written:', outF, '\n')

accuracy ~ pre-fractionation Bray-Curtis

  • mean Bray-Curtis among replicates

In [ ]:
betaDiv_files = list.files(path=workDir, pattern='comm_betaDiv.txt', full.names=TRUE, recursive=TRUE)
betaDiv_files %>% length %>% print

In [ ]:
df_beta = list()
for(F in betaDiv_files){
    tmp = read.delim(F, sep='\t') 
    FF = strsplit(F, '/') %>% unlist
    FFl = length(FF)
    tmp$shared_perc = FF[FFl-3]
    tmp$perm_perc = FF[FFl-2]
    tmp$rep = FF[FFl-1]
    df_beta[[F]] = tmp
}

df_beta = do.call(rbind, df_beta)
rownames(df_beta) = 1:nrow(df_beta)

# status
df_beta %>% head(n=3)

In [ ]:
# mean bray per parameter set
df_beta_s = df_beta %>%
    group_by(shared_perc, perm_perc, rep) %>%
    summarize(mean_BC = mean(bray)) %>%
    ungroup() %>%
    mutate(shared_perc = shared_perc %>% as.Num,
           perm_perc = perm_perc %>% as.Num, 
           rep = rep %>% as.Num)
# status
df_beta_s %>% head(n=3)

In [ ]:
# confusion matrix data
vars = c('Balanced Accuracy', 'Sensitivity', 'Specificity')

df_byClass.f = df_byClass %>%
    filter(variables %in% vars) %>%
    mutate(shared_perc = shared_perc %>% as.Num,
           perm_perc = perm_perc %>% as.Num,
           rep = rep %>% as.Num)

df_byClass.f.j = inner_join(df_byClass.f, df_beta_s, 
                            c('shared_perc'='shared_perc',
                              'perm_perc'='perm_perc',
                              'rep'='rep')) %>%
    #filter(variables == 'Balanced Accuracy') %>%
    mutate(perm_perc = perm_perc %>% as.character,
           perm_perc = perm_perc %>% reorder(perm_perc %>% as.numeric),
           shared_perc = shared_perc %>% as.character,
           shared_perc = shared_perc %>% reorder(shared_perc %>% as.numeric))
    
# status
df_byClass.f %>% head(n=3)

In [ ]:
# plotting
options(repr.plot.width=9, repr.plot.height=5)
p.betadiv = ggplot(df_byClass.f.j %>% filter(library==6), aes(mean_BC, values)) +
    stat_smooth(level=0.99, n=10) +
    labs(x='Mean Bray-Curtis distance among pre-fractionation communities') +
    facet_grid(variables ~ method) +
    theme_bw() +
    theme(
        axis.title.y = element_blank()
    )
p.betadiv

In [ ]:
outF = file.path(workDir, 'microBetaDiv_bc-smooth.pdf')
ggsave(outF, p.betadiv, width=10, height=6)
cat('File written:', outF, '\n')

In [ ]:
outF = file.path(workDir, 'microBetaDiv_bc-smooth.jpeg')
ggsave(outF, p.betadiv, width=10, height=6)
cat('File written:', outF, '\n')

BD shift quantify

True BD shift


In [ ]:
BDshift_files = list.files(path=workDir, pattern='BD-shift_stats.txt', full.names=TRUE, recursive=TRUE)
BDshift_files %>% length %>% print

In [ ]:
df_shift = list()
for(F in BDshift_files){
    tmp = read.delim(F, sep='\t') 
    FF = strsplit(F, '/') %>% unlist
    FFl = length(FF)
    tmp$shared_perc = FF[FFl-3]
    tmp$perm_perc = FF[FFl-2]
    tmp$rep = FF[FFl-1]
    tmp$file = FF[FFl]
    df_shift[[F]] = tmp
}

df_shift = do.call(rbind, df_shift)
rownames(df_shift) = 1:nrow(df_shift)

df_shift = df_shift %>%
    filter(library %in% c(2,4,6)) %>%
    group_by(taxon, shared_perc, perm_perc, rep) %>%
    summarize(median = median(median)) %>%
    ungroup() %>%
    rename('median_true_BD_shift' = median) 

# status
df_shift %>% nrow %>% print
df_shift %>% head(n=3)

MW-HR-SIP incorp calls

  • filtering BD shift estimates to just incorporators identified by MW-HR-SIP

In [ ]:
incorp_files = list.files(path=workDir, pattern='OTU_abs1e9_PCR_sub_filt_MW_DESeq2_incorp.txt', full.names=TRUE, recursive=TRUE)
incorp_files %>% length %>% print

In [ ]:
df_incorp = list()
for(F in incorp_files){
    tmp = read.delim(F, sep='\t') 
    FF = strsplit(F, '/') %>% unlist
    FFl = length(FF)
    tmp$shared_perc = FF[FFl-3]
    tmp$perm_perc = FF[FFl-2]
    tmp$rep = FF[FFl-1]
    tmp$file = FF[FFl]
    df_incorp[[F]] = tmp
}

df_incorp = do.call(rbind, df_incorp)
rownames(df_incorp) = 1:nrow(df_incorp)
df_incorp %>% head(n=3) %>% print

In [ ]:
# just incorporators
df_incorp = df_incorp %>%
    filter(incorp == TRUE) %>%
    dplyr::distinct(taxon, incorp, shared_perc, perm_perc, rep) %>%
    rename('HWHRSIP_incorp' = incorp)

df_incorp %>% nrow %>% print
df_incorp %>% head(n=3) %>% print

q-SIP


In [ ]:
atomX_files = list.files(path=workDir, pattern='*_qSIP_atom.txt', full.names=TRUE, recursive=TRUE)
atomX_files %>% length %>% print

In [ ]:
df_atomX = list()
for(F in atomX_files){
    tmp = read.delim(F, sep='\t') 
    FF = strsplit(F, '/') %>% unlist
    FFl = length(FF)
    tmp$shared_perc = FF[FFl-3]
    tmp$perm_perc = FF[FFl-2]
    tmp$rep = FF[FFl-1]
    tmp$file = FF[FFl]
    df_atomX[[F]] = tmp
}

df_atomX = do.call(rbind, df_atomX)
rownames(df_atomX) = 1:nrow(df_atomX)
df_atomX %>% head(n=3) %>% print

Joining estimate with true values


In [ ]:
# table join
df_atomX %>% nrow %>% print

df.j = left_join(df_atomX, df_shift, c('taxon' = 'taxon',
                                       'shared_perc'='shared_perc',
                                       'perm_perc'='perm_perc',
                                       'rep'='rep')) %>%
   filter(!is.na(BD_diff)) %>%
   mutate(true_incorporator = ifelse(median_true_BD_shift > 0.002, TRUE, FALSE),
          true_atom_fraction_excess = median_true_BD_shift / 0.036,
          atom_fraction_excess = ifelse(is.na(atom_CI_low), 0, atom_fraction_excess))

df.j %>% nrow %>% print
df.j %>% head(n=3) %>% print

In [ ]:
df.j$true_incorporator %>% summary

Joining with MW-HR-SIP


In [ ]:
df.j = left_join(df.j, df_incorp, c('taxon' = 'taxon',
                                    'shared_perc'='shared_perc',
                                    'perm_perc'='perm_perc',
                                    'rep'='rep')) %>%
    mutate(HWHRSIP_incorp = ifelse(is.na(HWHRSIP_incorp), FALSE, TRUE))

df.j %>% nrow %>% print
df.j %>% head(n=3) %>% print

Plotting results


In [ ]:
# difference between true and estimated

## q-SIP incorporators 
df.j.dis.qSIP = df.j %>%
    filter(atom_CI_low > 0) %>%     # just incorporators identified by q-SIP
    mutate(delta_excess = atom_fraction_excess * 100 - true_atom_fraction_excess * 100) %>%
    group_by(shared_perc, perm_perc) %>%
    summarize(mean_delta_excess = mean(delta_excess),
              sd_delta_excess = sd(delta_excess)) %>%
    ungroup() %>%
    mutate(shared_perc = shared_perc %>% reorder(shared_perc %>% as.numeric),
           perm_perc = perm_perc %>% reorder(perm_perc %>% as.numeric))
   
# plotting
options(repr.plot.width=6, repr.plot.height=3)
p_qSIP = ggplot(df.j.dis.qSIP, aes(shared_perc, mean_delta_excess, 
                      color=perm_perc, group=perm_perc,
                      ymin=mean_delta_excess-sd_delta_excess,
                     ymax=mean_delta_excess+sd_delta_excess)) +
    geom_linerange(alpha=0.4, size=1) +    
    geom_point() +
    geom_line() +
    #facet_grid(true_incorporator ~ .) +
    scale_color_discrete('% incorp-\norators') +
    labs(x='% taxa shared among pre-fractionation communities', 
         y='13C atom % excess\n(truth - estimate)') +
    theme_bw() 

p_qSIP

In [ ]:
# difference between true and estimated

## q-SIP incorporators 
df.j.dis.qSIP = df.j %>%
    filter(atom_CI_low > 0) %>%     # just incorporators identified by q-SIP
    filter(HWHRSIP_incorp == TRUE) %>%    # just MW-HR-SIP incorporators 
    mutate(delta_excess = atom_fraction_excess * 100 - true_atom_fraction_excess * 100) %>%
    group_by(shared_perc, perm_perc) %>%
    summarize(mean_delta_excess = mean(delta_excess),
              sd_delta_excess = sd(delta_excess)) %>%
    ungroup() %>%
    mutate(shared_perc = shared_perc %>% reorder(shared_perc %>% as.numeric),
           perm_perc = perm_perc %>% reorder(perm_perc %>% as.numeric))
   
# plotting
options(repr.plot.width=6, repr.plot.height=2.5)
p_qSIP = ggplot(df.j.dis.qSIP, aes(shared_perc, mean_delta_excess, 
                      color=perm_perc, group=perm_perc,
                      ymin=mean_delta_excess-sd_delta_excess,
                     ymax=mean_delta_excess+sd_delta_excess)) +
    geom_linerange(alpha=0.4, size=1) +    
    geom_point() +
    geom_line() +
    #facet_grid(true_incorporator ~ .) +
    scale_color_discrete('% of rank\nabundances\npermuted') +
    labs(x='% taxa shared among pre-fractionation communities', 
         y='13C atom % excess\n(truth - estimate)') +
    theme_bw() 

p_qSIP

In [ ]:
# difference between true and estimated
## q-SIP incorporators 
tmp1 = df.j %>%
    filter(atom_CI_low > 0) %>%     # just incorporators identified by q-SIP
    mutate(delta_excess = atom_fraction_excess * 100 - true_atom_fraction_excess * 100) %>%
    group_by(shared_perc, perm_perc) %>%
    summarize(mean_delta_excess = mean(delta_excess),
              sd_delta_excess = sd(delta_excess)) %>%
    ungroup() %>%
    mutate(shared_perc = shared_perc %>% reorder(shared_perc %>% as.numeric),
           perm_perc = perm_perc %>% reorder(perm_perc %>% as.numeric),
           incorp_called = 'No filter')
## MW-HR-SIP incorporators
tmp2 = df.j %>%
    filter(atom_CI_low > 0) %>%     # just incorporators identified by q-SIP
    filter(HWHRSIP_incorp == TRUE) %>%    # just MW-HR-SIP incorporators 
    mutate(delta_excess = atom_fraction_excess * 100 - true_atom_fraction_excess * 100) %>%
    group_by(shared_perc, perm_perc) %>%
    summarize(mean_delta_excess = mean(delta_excess),
              sd_delta_excess = sd(delta_excess)) %>%
    ungroup() %>%
    mutate(shared_perc = shared_perc %>% reorder(shared_perc %>% as.numeric),
           perm_perc = perm_perc %>% reorder(perm_perc %>% as.numeric),
           incorp_called = 'MW-HR-SIP filter')

# combining tables
df.j.dis.qSIP = rbind(tmp1, tmp2) %>%
    mutate(incorp_called = factor(incorp_called, levels=c('No filter', 'MW-HR-SIP filter')))

   
# plotting
options(repr.plot.width=6, repr.plot.height=4)
p_qSIP = ggplot(df.j.dis.qSIP, aes(shared_perc, mean_delta_excess, 
                      color=perm_perc, group=perm_perc,
                      ymin=mean_delta_excess-sd_delta_excess,
                     ymax=mean_delta_excess+sd_delta_excess)) +
    geom_line() +
    geom_linerange(alpha=0.4, size=1) +    
    geom_point() +
    facet_grid(incorp_called ~ .) +
    scale_color_discrete('% of rank\nabundances\npermuted') +
    labs(x='% taxa shared among pre-fractionation communities', 
         y='13C atom % excess\n(truth - estimate)') +
    theme_bw() 

p_qSIP

delta-BD


In [ ]:
dBD_files = list.files(path=workDir, pattern='*_dBD.txt', full.names=TRUE, recursive=TRUE)
dBD_files %>% length %>% print

In [ ]:
df_dBD = list()
for(F in dBD_files){
    tmp = read.delim(F, sep='\t') 
    FF = strsplit(F, '/') %>% unlist
    FFl = length(FF)
    tmp$shared_perc = FF[FFl-3]
    tmp$perm_perc = FF[FFl-2]
    tmp$rep = FF[FFl-1]
    tmp$file = FF[FFl]
    df_dBD[[F]] = tmp
}

df_dBD = do.call(rbind, df_dBD)
rownames(df_dBD) = 1:nrow(df_dBD)
df_dBD %>% head(n=3) %>% print

Joining estimate with truth


In [ ]:
df.j = inner_join(df_dBD, df_shift, c('taxon' = 'taxon',
                                       'shared_perc'='shared_perc',
                                       'perm_perc'='perm_perc',
                                       'rep'='rep')) %>%
    filter(!is.na(delta_BD)) %>%
    mutate(true_incorporator = ifelse(median_true_BD_shift > 0.002, TRUE, FALSE),
           true_atom_fraction_excess = median_true_BD_shift / 0.036,
           atom_fraction_excess = delta_BD / 0.036)
df.j %>% head(n=3)

Joining with MW-HR-SIP


In [ ]:
df.j = left_join(df.j, df_incorp, c('taxon' = 'taxon',
                                    'shared_perc'='shared_perc',
                                    'perm_perc'='perm_perc',
                                    'rep'='rep')) %>%
    mutate(HWHRSIP_incorp = ifelse(is.na(HWHRSIP_incorp), FALSE, TRUE))

df.j %>% nrow %>% print
df.j %>% head(n=3)

Plotting results


In [ ]:
# difference between true and estimated
tmp1 = df.j %>%
    mutate(delta_excess = atom_fraction_excess * 100 - true_atom_fraction_excess * 100) %>%
    group_by(shared_perc, perm_perc) %>%
    summarize(mean_delta_excess = mean(delta_excess),
              sd_delta_excess = sd(delta_excess)) %>%
    ungroup() %>%
    mutate(shared_perc = shared_perc %>% reorder(shared_perc %>% as.numeric),
           perm_perc = perm_perc %>% reorder(perm_perc %>% as.numeric),
           incorp_called = 'No filter')

tmp2 = df.j %>%
    filter(HWHRSIP_incorp == TRUE) %>%    # just MW-HR-SIP incorporators 
    mutate(delta_excess = atom_fraction_excess * 100 - true_atom_fraction_excess * 100) %>%
    group_by(shared_perc, perm_perc) %>%
    summarize(mean_delta_excess = mean(delta_excess),
              sd_delta_excess = sd(delta_excess)) %>%
    ungroup() %>%
    mutate(shared_perc = shared_perc %>% reorder(shared_perc %>% as.numeric),
           perm_perc = perm_perc %>% reorder(perm_perc %>% as.numeric),
           incorp_called = 'MW-HR-SIP filter')

   
# combining tables
df.j.dis.dBD = rbind(tmp1, tmp2) %>%
    mutate(incorp_called = factor(incorp_called, levels=c('No filter', 'MW-HR-SIP filter')))


# plotting
options(repr.plot.width=8, repr.plot.height=4)
p_dBD = ggplot(df.j.dis.dBD, aes(shared_perc, mean_delta_excess, 
                      color=perm_perc, group=perm_perc,
                      ymin=mean_delta_excess-sd_delta_excess,
                     ymax=mean_delta_excess+sd_delta_excess)) +
    geom_line() +
    geom_linerange(alpha=0.4, size=1) +    
    geom_point() +
    facet_grid(incorp_called ~ .) +
    scale_color_discrete('% of rank\nabundances\npermuted') +
    labs(x='% taxa shared among pre-fractionation communities', 
         y='13C atom % excess\n(truth - estimate)') +
    theme_bw() 

p_dBD

Combined plot


In [ ]:
df.jj = rbind(df.j.dis.qSIP %>% mutate(method='qSIP'),
              df.j.dis.dBD %>% mutate(method='Delta BD')) %>%
    mutate(method = gsub('qSIP', 'q-SIP', method))


p.comb = ggplot(df.jj, aes(shared_perc, mean_delta_excess, 
                      color=perm_perc, group=perm_perc,
                      ymin=mean_delta_excess-sd_delta_excess,
                     ymax=mean_delta_excess+sd_delta_excess)) +
    geom_line() +
    geom_linerange(alpha=0.5, size=1) +
    geom_point() +
    scale_color_discrete('% of rank\nabundances\npermuted') +
    labs(x='% taxa shared among pre-fractionation communities', 
         y='atom % excess 13C\n(truth - estimate)') +
    facet_grid(incorp_called ~ method) +
    theme_bw() 
p.comb

In [ ]:
outF = file.path(workDir, 'microBetaDiv_BDshift.pdf')
ggsave(outF, p.comb, width=8, height=4)
cat('File written:', outF, '\n')

In [ ]:
outF = file.path(workDir, 'microBetaDiv_BDshift.jpeg')
ggsave(outF, p.comb, width=8, height=4)
cat('File written:', outF, '\n')

In [ ]: