In [12]:
workDir = '/home/nick/notebook/SIPSim/dev/bac_genome1147/Meselson_diff/validation/'
genomeDir = '/var/seq_data/ncbi_db/genome/Jan2016/bac_complete_spec-rep1_rn/'
R_dir = '/home/nick/notebook/SIPSim/lib/R/'
#figureDir = '/home/nick/notebook/SIPSim/figures/bac_genome_n1147/'
bandwidth = 0.8
DBL_scaling = 0.5
subsample_dist = 'lognormal'
subsample_mean = 9.432
subsample_scale = 0.5
subsample_min = 10000
subsample_max = 30000
In [13]:
import glob
from os.path import abspath
import nestly
from IPython.display import Image
import os
%load_ext rpy2.ipython
%load_ext pushnote
In [14]:
%%R
library(ggplot2)
library(dplyr)
library(tidyr)
library(gridExtra)
In [15]:
if not os.path.isdir(workDir):
os.makedirs(workDir)
if not os.path.isdir(figureDir):
os.makedirs(figureDir)
%cd $workDir
In [16]:
# Determining min/max BD that
## min G+C cutoff
min_GC = 13.5
## max G+C cutoff
max_GC = 80
## max G+C shift
max_13C_shift_in_BD = 0.036
min_range_BD = min_GC/100.0 * 0.098 + 1.66
max_range_BD = max_GC/100.0 * 0.098 + 1.66
max_range_BD = max_range_BD + max_13C_shift_in_BD
print 'Min BD: {}'.format(min_range_BD)
print 'Max BD: {}'.format(max_range_BD)
In [17]:
!SIPSim communities \
$genomeDir/genome_index.txt \
--n_comm 2 \
> comm.txt
In [18]:
%%R -w 750 -h 300
tbl = read.delim('comm.txt', sep='\t')
tbl$library = as.character(tbl$library)
tbl$library = ifelse(tbl$library == 1, 'Control', 'Treatment')
ggplot(tbl, aes(rank, rel_abund_perc, color=library, group=taxon_name)) +
geom_point() +
scale_y_log10() +
scale_color_discrete('Community') +
labs(x='Rank', y='Relative abundance (%)') +
theme_bw() +
theme(
text=element_text(size=16)
)
In [19]:
!SIPSim gradient_fractions \
--BD_min $min_range_BD \
--BD_max $max_range_BD \
comm.txt \
> fracs.txt
In [20]:
%%R -w 600 -h 300
tbl = read.delim('fracs.txt', sep='\t')
ggplot(tbl, aes(fraction, fraction_size)) +
geom_bar(stat='identity') +
facet_grid(library ~ .) +
labs(y='fraction size') +
theme_bw() +
theme(
text=element_text(size=16)
)
In [21]:
%%R -w 300 -h 250
tbl$library = as.character(tbl$library)
ggplot(tbl, aes(library, fraction_size)) +
geom_boxplot() +
labs(y='fraction size') +
theme_bw() +
theme(
text=element_text(size=16)
)
In [22]:
# estimated coverage
mean_frag_size = 9000.0
mean_amp_len = 300.0
n_frags = 10000
coverage = round(n_frags * mean_amp_len / mean_frag_size, 1)
msg = 'Average coverage from simulating {} fragments: {}X'
print msg.format(n_frags, coverage)
In [26]:
!SIPSim fragments \
$genomeDir/genome_index.txt \
--fp $genomeDir \
--fr ../../../515F-806R.fna \
--fld skewed-normal,9000,2500,-5 \
--flr None,None \
--nf 10000 \
--np 24 \
2> ampFrags.log \
> ampFrags.pkl
In [27]:
!grep "Number of amplicons: " ampFrags.log | \
perl -pe 's/.+ +//' | hist
In [28]:
!printf "Number of taxa with >=1 amplicon: "
!grep "Number of amplicons: " ampFrags.log | \
perl -ne "s/^.+ +//; print unless /^0$/" | wc -l
In [29]:
!SIPSim fragment_KDE \
ampFrags.pkl \
> ampFrags_kde.pkl
In [30]:
!SIPSim KDE_info \
-s ampFrags_kde.pkl \
> ampFrags_kde_info.txt
In [31]:
%%R
# loading
df = read.delim('ampFrags_kde_info.txt', sep='\t')
df.kde1 = df %>%
filter(KDE_ID == 1)
df.kde1 %>% head(n=3)
BD_GC50 = 0.098 * 0.5 + 1.66
In [32]:
%%R -w 500 -h 250
# plotting
p.amp = ggplot(df.kde1, aes(median)) +
geom_histogram(binwidth=0.001) +
geom_vline(xintercept=BD_GC50, linetype='dashed', color='red', alpha=0.7) +
labs(x='Median buoyant density') +
theme_bw() +
theme(
text = element_text(size=16)
)
p.amp
In [ ]:
!SIPSim diffusion \
--bw $bandwidth \
--np 24 \
-m Meselson \
ampFrags_kde.pkl \
> ampFrags_kde_dif.pkl \
2> ampFrags_kde_dif.log
In [48]:
!SIPSim DBL \
--comm comm.txt \
--commx $DBL_scaling \
--np 24 \
ampFrags_kde_dif.pkl \
> ampFrags_kde_dif_DBL.pkl \
2> ampFrags_kde_dif_DBL.log
# checking output
!tail -n 5 ampFrags_kde_dif_DBL.log
In [50]:
# none
!SIPSim KDE_info \
-s ampFrags_kde.pkl \
> ampFrags_kde_info.txt
# diffusion
!SIPSim KDE_info \
-s ampFrags_kde_dif.pkl \
> ampFrags_kde_dif_info.txt
# diffusion + DBL
!SIPSim KDE_info \
-s ampFrags_kde_dif_DBL.pkl \
> ampFrags_kde_dif_DBL_info.txt
In [51]:
%%R
inFile = 'ampFrags_kde_info.txt'
df.raw = read.delim(inFile, sep='\t')
df.raw$stage = 'raw'
inFile = 'ampFrags_kde_dif_info.txt'
df.dif = read.delim(inFile, sep='\t')
df.dif$stage = 'diffusion'
inFile = 'ampFrags_kde_dif_DBL_info.txt'
df.DBL = read.delim(inFile, sep='\t')
df.DBL$stage = 'diffusion +\nDBL'
df = rbind(df.raw, df.dif, df.DBL)
df.dif = ''
df.DBL = ''
df %>% head(n=3)
In [52]:
%%R -w 350 -h 300
df$stage = factor(df$stage, levels=c('raw', 'diffusion', 'diffusion +\nDBL'))
ggplot(df, aes(stage)) +
geom_boxplot(aes(y=min), color='red') +
geom_boxplot(aes(y=median), color='darkgreen') +
geom_boxplot(aes(y=max), color='blue') +
scale_y_continuous(limits=c(1.3, 2)) +
labs(y = 'Buoyant density (g ml^-1)') +
theme_bw() +
theme(
text = element_text(size=16),
axis.title.x = element_blank()
)
In [54]:
!SIPSim incorpConfigExample \
--percTaxa 10 \
--percIncorpUnif 100 \
> PT10_PI100.config
# checking output
!head PT10_PI100.config
In [ ]:
!SIPSim isotope_incorp \
--comm comm.txt \
--np 24 \
--shift ampFrags_BD-shift.txt \
ampFrags_kde_dif_DBL.pkl \
PT10_PI100.config \
> ampFrags_kde_dif_DBL_incorp.pkl \
2> ampFrags_kde_dif_DBL_incorp.log
# checking log
!tail -n 5 ampFrags_kde_dif_DBL_incorp.log
In [ ]:
%%R
inFile = 'ampFrags_BD-shift.txt'
df = read.delim(inFile, sep='\t') %>%
mutate(library = library %>% as.character)
In [ ]:
%%R -h 275 -w 375
inFile = 'ampFrags_BD-shift.txt'
df = read.delim(inFile, sep='\t') %>%
mutate(library = library %>% as.character)
df.s = df %>%
mutate(incorporator = ifelse(min > 0.001, TRUE, FALSE),
incorporator = ifelse(is.na(incorporator), 'NA', incorporator),
library = ifelse(library == '1', 'control', 'treatment')) %>%
group_by(library, incorporator) %>%
summarize(n_incorps = n())
# summary of number of incorporators
df.s %>%
filter(library == 'treatment') %>%
mutate(n_incorps / sum(n_incorps)) %>%
as.data.frame %>% print
# plotting
ggplot(df.s, aes(library, n_incorps, fill=incorporator)) +
geom_bar(stat='identity') +
labs(y = 'Count', title='Number of incorporators\n(according to BD shift)') +
theme_bw() +
theme(
text = element_text(size=16)
)
In [ ]:
!SIPSim OTU_table \
--abs 1e9 \
--np 20 \
ampFrags_kde_dif_DBL_incorp.pkl \
comm.txt \
fracs.txt \
> OTU_n2_abs1e9.txt \
2> OTU_n2_abs1e9.log
# checking log
!tail -n 5 OTU_n2_abs1e9.log
In [ ]:
%%R
## BD for G+C of 0 or 100
BD.GCp0 = 0 * 0.098 + 1.66
BD.GCp50 = 0.5 * 0.098 + 1.66
BD.GCp100 = 1 * 0.098 + 1.66
In [ ]:
%%R -w 700 -h 350
# plotting absolute abundances
# loading file
df = read.delim('OTU_n2_abs1e9.txt', sep='\t')
df.s = df %>%
group_by(library, BD_mid) %>%
summarize(total_count = sum(count))
## plot
p = ggplot(df.s, aes(BD_mid, total_count)) +
#geom_point() +
geom_area(stat='identity', alpha=0.3, position='dodge') +
geom_vline(xintercept=c(BD.GCp50), linetype='dashed', alpha=0.5) +
labs(x='Buoyant density', y='Total abundance') +
facet_grid(library ~ .) +
theme_bw() +
theme(
text = element_text(size=16)
)
p
In [ ]:
%%R -w 700 -h 350
# plotting number of taxa at each BD
df.nt = df %>%
filter(count > 0) %>%
group_by(library, BD_mid) %>%
summarize(n_taxa = n())
## plot
p = ggplot(df.nt, aes(BD_mid, n_taxa)) +
#geom_point() +
geom_area(stat='identity', alpha=0.3, position='dodge') +
#geom_histogram(stat='identity') +
geom_vline(xintercept=c(BD.GCp50), linetype='dashed', alpha=0.5) +
labs(x='Buoyant density', y='Number of taxa') +
facet_grid(library ~ .) +
theme_bw() +
theme(
text = element_text(size=16),
legend.position = 'none'
)
p
In [ ]:
%%R -w 700 -h 350
# plotting relative abundances
## plot
p = ggplot(df, aes(BD_mid, count, fill=taxon)) +
geom_vline(xintercept=c(BD.GCp50), linetype='dashed', alpha=0.5) +
labs(x='Buoyant density', y='Absolute abundance') +
facet_grid(library ~ .) +
theme_bw() +
theme(
text = element_text(size=16),
legend.position = 'none'
)
p + geom_area(stat='identity', position='dodge', alpha=0.5)
In [ ]:
%%R -w 700 -h 350
p +
geom_area(stat='identity', position='fill') +
labs(x='Buoyant density', y='Relative abundance')
In [ ]:
!SIPSim OTU_PCR \
OTU_n2_abs1e9.txt \
--debug \
> OTU_n2_abs1e9_PCR.txt
In [ ]:
%%R -w 800 -h 300
# loading file
F = 'OTU_n2_abs1e9_PCR.txt'
df.SIM = read.delim(F, sep='\t') %>%
mutate(molarity_increase = final_molarity / init_molarity * 100)
p1 = ggplot(df.SIM, aes(init_molarity, final_molarity)) +
geom_point(shape='O', alpha=0.5) +
labs(x='Initial molarity', y='Final molarity') +
theme_bw() +
theme(
text = element_text(size=16)
)
p2 = ggplot(df.SIM, aes(init_molarity, molarity_increase)) +
geom_point(shape='O', alpha=0.5) +
scale_y_log10() +
labs(x='Initial molarity', y='% increase in molarity') +
theme_bw() +
theme(
text = element_text(size=16)
)
grid.arrange(p1, p2, ncol=2)
In [ ]:
%%R -w 800 -h 450
# plotting rank abundances
df.SIM = df.SIM %>%
group_by(library, fraction) %>%
mutate(rel_init_molarity = init_molarity / sum(init_molarity),
rel_final_molarity = final_molarity / sum(final_molarity),
init_molarity_rank = row_number(rel_init_molarity),
final_molarity_rank = row_number(rel_final_molarity)) %>%
ungroup()
p1 = ggplot(df.SIM, aes(init_molarity_rank, rel_init_molarity, color=BD_mid, group=BD_mid)) +
geom_line(alpha=0.5) +
scale_y_log10(limits=c(1e-7, 0.1)) +
scale_x_reverse() +
scale_color_gradient('Buoyant\ndensity') +
labs(x='Rank', y='Relative abundance', title='pre-PCR') +
theme_bw() +
theme(
text = element_text(size=16)
)
p2 = ggplot(df.SIM, aes(final_molarity_rank, rel_final_molarity, color=BD_mid, group=BD_mid)) +
geom_line(alpha=0.5) +
scale_y_log10(limits=c(1e-7, 0.1)) +
scale_x_reverse() +
scale_color_gradient('Buoyant\ndensity') +
labs(x='Rank', y='Relative abundance', title='post-PCR') +
theme_bw() +
theme(
text = element_text(size=16)
)
grid.arrange(p1, p2, ncol=1)
In [ ]:
# PCR w/out --debug
!SIPSim OTU_PCR \
OTU_n2_abs1e9.txt \
> OTU_n2_abs1e9_PCR.txt
In [ ]:
!SIPSim OTU_subsample \
--dist $subsample_dist \
--dist_params mean:$subsample_mean,sigma:$subsample_scale \
--min_size $subsample_min \
--max_size $subsample_max \
OTU_n2_abs1e9_PCR.txt \
> OTU_n2_abs1e9_PCR_subNorm.txt
In [ ]:
%%R -w 300 -h 250
df = read.csv('OTU_n2_abs1e9_PCR_subNorm.txt', sep='\t')
df.s = df %>%
group_by(library, fraction) %>%
summarize(total_count = sum(count)) %>%
ungroup() %>%
mutate(library = as.character(library))
ggplot(df.s, aes(library, total_count)) +
geom_boxplot() +
labs(y='Number of sequences\nper fraction') +
theme_bw() +
theme(
text = element_text(size=16)
)
In [ ]:
%%R
# loading file
df.abs = read.delim('OTU_n2_abs1e9.txt', sep='\t')
df.sub = read.delim('OTU_n2_abs1e9_PCR_subNorm.txt', sep='\t')
lib.reval = c('1' = 'control',
'2' = 'treatment')
df.abs = mutate(df.abs, library = plyr::revalue(as.character(library), lib.reval))
df.sub = mutate(df.sub, library = plyr::revalue(as.character(library), lib.reval))
In [ ]:
%%R -w 700 -h 800
# plotting absolute abundances
## plot
p = ggplot(df.abs, aes(BD_mid, count, fill=taxon)) +
geom_vline(xintercept=c(BD.GCp50), linetype='dashed', alpha=0.5) +
labs(x='Buoyant density') +
facet_grid(library ~ .) +
theme_bw() +
theme(
text = element_text(size=16),
axis.title.y = element_text(vjust=1),
axis.title.x = element_blank(),
legend.position = 'none',
plot.margin=unit(c(1,1,0.1,1), "cm")
)
p1 = p + geom_area(stat='identity', position='dodge', alpha=0.5) +
labs(y='Total community\n(absolute abundance)')
# plotting absolute abundances of subsampled
## plot
p = ggplot(df.sub, aes(BD_mid, count, fill=taxon)) +
geom_vline(xintercept=c(BD.GCp50), linetype='dashed', alpha=0.5) +
labs(x='Buoyant density') +
facet_grid(library ~ .) +
theme_bw() +
theme(
text = element_text(size=16),
legend.position = 'none'
)
p2 = p + geom_area(stat='identity', position='dodge', alpha=0.5) +
labs(y='Subsampled community\n(absolute abundance)') +
theme(
axis.title.y = element_text(vjust=1),
axis.title.x = element_blank(),
plot.margin=unit(c(0.1,1,0.1,1), "cm")
)
# plotting relative abundances of subsampled
p3 = p + geom_area(stat='identity', position='fill') +
geom_vline(xintercept=c(BD.GCp50), linetype='dashed', alpha=0.5) +
labs(y='Subsampled community\n(relative abundance)') +
theme(
axis.title.y = element_text(vjust=1),
plot.margin=unit(c(0.1,1,1,1.35), "cm")
)
# combining plots
grid.arrange(p1, p2, p3, ncol=1)
In [ ]:
%%R -i figureDir
# saving figure
outFile = file.path(figureDir, 'abundDist_example.pdf')
pdf(outFile, width=10.5, height=12)
grid.arrange(p1, p2, p3, ncol=1)
dev.off()
In [ ]:
!SIPSim OTU_wideLong -w \
OTU_n2_abs1e9_PCR_subNorm.txt \
> OTU_n2_abs1e9_PCR_subNorm_w.txt
In [ ]:
!SIPSim OTU_sampleData \
OTU_n2_abs1e9_PCR_subNorm.txt \
> OTU_n2_abs1e9_PCR_subNorm_meta.txt
In [ ]:
# making phyloseq object from OTU table
!SIPSimR phyloseq_make \
OTU_n2_abs1e9_PCR_subNorm_w.txt \
-s OTU_n2_abs1e9_PCR_subNorm_meta.txt \
> OTU_n2_abs1e9_PCR_subNorm.physeq
## making ordination
!SIPSimR phyloseq_ordination \
OTU_n2_abs1e9_PCR_subNorm.physeq \
OTU_n2_abs1e9_PCR_subNorm_bray-NMDS.pdf
## filtering phyloseq object to just taxa/samples of interest (eg., BD-min/max)
!SIPSimR phyloseq_edit \
OTU_n2_abs1e9_PCR_subNorm.physeq \
--BD_min 1.71 --BD_max 1.75 --occur 0.25 \
> OTU_n2_abs1e9_PCR_subNorm_filt.physeq
## making ordination
!SIPSimR phyloseq_ordination \
OTU_n2_abs1e9_PCR_subNorm_filt.physeq \
OTU_n2_abs1e9_PCR_subNorm_filt_bray-NMDS.pdf
# making png figures
!convert OTU_n2_abs1e9_PCR_subNorm_bray-NMDS.pdf OTU_n2_abs1e9_PCR_subNorm_bray-NMDS.png
!convert OTU_n2_abs1e9_PCR_subNorm_filt_bray-NMDS.pdf OTU_n2_abs1e9_PCR_subNorm_filt_bray-NMDS.png
In [ ]:
Image(filename='OTU_n2_abs1e9_PCR_subNorm_bray-NMDS.png')
In [ ]:
Image(filename='OTU_n2_abs1e9_PCR_subNorm_filt_bray-NMDS.png')
In [ ]:
## DESeq2
!SIPSimR phyloseq_DESeq2 \
--log2 0.25 \
--hypo greater \
OTU_n2_abs1e9_PCR_subNorm_filt.physeq \
> OTU_n2_abs1e9_PCR_subNorm_DESeq2
## Confusion matrix
!SIPSimR DESeq2_confuseMtx \
--padj 0.1 \
ampFrags_BD-shift.txt \
OTU_n2_abs1e9_PCR_subNorm_DESeq2
In [ ]:
%%R -w 500 -h 250
byClass = read.delim('DESeq2-cMtx_byClass.txt', sep='\t') %>%
filter(library == 2)
ggplot(byClass, aes(variables, values)) +
geom_bar(stat='identity') +
labs(y='Value') +
theme_bw() +
theme(
text = element_text(size=16),
axis.title.x = element_blank(),
axis.text.x = element_text(angle=45, hjust=1)
)
In [ ]:
%%R
clsfy = function(guess,known){
if(is.na(guess) | is.na(known)){
return(NA)
}
if(guess == TRUE){
if(guess == known){
return('True positive')
} else {
return('False positive')
}
} else
if(guess == FALSE){
if(guess == known){
return('True negative')
} else {
return('False negative')
}
} else {
stop('Error: true or false needed')
}
}
In [ ]:
%%R
df = read.delim('DESeq2-cMtx_data.txt', sep='\t')
df = df %>%
filter(! is.na(log2FoldChange), library == 2) %>%
mutate(taxon = reorder(taxon, -log2FoldChange),
cls = mapply(clsfy, incorp.pred, incorp.known))
df %>% head(n=3)
In [ ]:
%%R -w 800 -h 350
df.TN = df %>% filter(cls == 'True negative')
df.TP = df %>% filter(cls == 'True positive')
df.FP = df %>% filter(cls == 'False negative')
ggplot(df, aes(taxon, log2FoldChange, color=cls,
ymin=log2FoldChange - lfcSE, ymax=log2FoldChange + lfcSE)) +
geom_pointrange(size=0.4, alpha=0.5) +
geom_pointrange(data=df.TP, size=0.4, alpha=0.3) +
geom_pointrange(data=df.FP, size=0.4, alpha=0.3) +
labs(x = 'Taxon', y = 'Log2 fold change') +
theme_bw() +
theme(
text = element_text(size=16),
panel.grid.major.x = element_blank(),
panel.grid.minor.x = element_blank(),
legend.title=element_blank(),
axis.text.x = element_blank(),
legend.position = 'bottom'
)
Notes:
Red circles = true positives
False positives should increase with taxon GC
In [ ]:
%%R
df.ds = read.delim('DESeq2-cMtx_data.txt', sep='\t')
df.comm = read.delim('comm.txt', sep='\t')
df.j = inner_join(df.ds, df.comm, c('taxon' = 'taxon_name',
'library' = 'library'))
df.ds = df.comm = NULL
df.j %>% head(n=3)
In [ ]:
%%R -h 500 -w 600
df.j.f = df.j %>%
filter(! is.na(log2FoldChange),
library == 2) %>%
mutate(cls = mapply(clsfy, incorp.pred, incorp.known))
y.lab = 'Pre-fractionation\nabundance (%)'
p1 = ggplot(df.j.f, aes(padj, rel_abund_perc, color=cls)) +
geom_point(alpha=0.7) +
scale_y_log10() +
labs(x='P-value (adjusted)', y=y.lab) +
theme_bw() +
theme(
text = element_text(size=16),
legend.position = 'bottom'
)
p2 = ggplot(df.j.f, aes(cls, rel_abund_perc)) +
geom_boxplot() +
scale_y_log10() +
labs(y=y.lab) +
theme_bw() +
theme(
text = element_text(size=16)
)
grid.arrange(p1, p2, ncol=1)
In [ ]:
%%R -h 300
# plotting
ggplot(df.j.f, aes(log2FoldChange, rel_abund_perc, color=cls)) +
geom_point(alpha=0.7) +
scale_y_log10() +
labs(x='log2 fold change', y=y.lab) +
theme_bw() +
theme(
text = element_text(size=16)
)