In [211]:
im = Image.open('realcap/captcha (10).gif').convert('L')
X_im = np.asarray(im).copy()
uniques, counts = np.unique(X_im, return_counts=True)
uniques
Out[211]:
In [212]:
from pylab import *
scatter(uniques, counts)
show()
In [213]:
X_im[X_im <= 150] = 0
X_im[X_im > 150] = 255
In [214]:
Image.fromarray(X_im)
Out[214]:
In [274]:
r = util.RandomGenerateOneChar(y=1).convert('L')
In [275]:
r
Out[275]:
In [276]:
X = np.asarray(r).astype('float64')
In [277]:
uniques, counts = np.unique(X, return_counts=True)
In [278]:
from pylab import *
scatter(uniques, counts)
show()
In [279]:
X[X <= 150] = 0
X[X > 150] = 255
In [242]:
Image.fromarray(X)
Out[242]:
In [1]:
from PIL import Image, ImageFont, ImageDraw
from zheye import util
from random import randint
import numpy as np
%matplotlib inline
In [10]:
sample_size = 1000
In [11]:
X = []
Y = []
for i in range(sample_size):
#direction = np.random.binomial(1, 0.5)
#if direction == 0:
# direction = -1
direction = -1
ret = util.RandomGenerateOneChar(y=direction)
tmp = np.asarray(ret.convert('L')).astype('float64')
tmp[tmp <= 150] = -1
# 黑色
tmp[tmp > 150] = 1
# 白底
X.append(tmp)
if direction == 1:
Y.append([1,0])
else:
Y.append([0,1])
X = np.array(X).astype("float64")
Y = np.array(Y).astype("uint8")
In [12]:
print Y[0]
In [13]:
Y.shape
Out[13]:
In [14]:
X[0]
Out[14]:
In [15]:
"""
mean = (X.sum(axis=0) /sample_size)
Image.fromarray(mean)
np.sum(mean)/mean.size
X = (X.astype("float64") - mean)/256
"""
""""""
Out[15]:
In [16]:
X = np.expand_dims(X, axis=3)
X.shape
Out[16]:
In [302]:
np.save('test_X', X)
np.save('test_Y', Y)
In [8]:
np.save('train_X', X)
np.save('train_Y', Y)
In [9]:
np.save('testF_X', X)
np.save('testF_Y', Y)
In [18]:
np.save('testT_X', X)
np.save('testT_Y', Y)