In [ ]:
%matplotlib inline

Compute source power spectral density (PSD) of VectorView and OPM data

Here we compute the resting state from raw for data recorded using a Neuromag VectorView system and a custom OPM system. The pipeline is meant to mostly follow the Brainstorm [1]_ OMEGA resting tutorial pipeline <bst_omega_>_. The steps we use are:

  1. Filtering: downsample heavily.
  2. Artifact detection: use SSP for EOG and ECG.
  3. Source localization: dSPM, depth weighting, cortically constrained.
  4. Frequency: power spectral density (Welch), 4 sec window, 50% overlap.
  5. Standardize: normalize by relative power for each source. :depth: 1

Preprocessing


In [ ]:
# Authors: Denis Engemann <denis.engemann@gmail.com>
#          Luke Bloy <luke.bloy@gmail.com>
#          Eric Larson <larson.eric.d@gmail.com>
#
# License: BSD (3-clause)

import os.path as op

from mne.filter import next_fast_len

import mne


print(__doc__)

data_path = mne.datasets.opm.data_path()
subject = 'OPM_sample'

subjects_dir = op.join(data_path, 'subjects')
bem_dir = op.join(subjects_dir, subject, 'bem')
bem_fname = op.join(subjects_dir, subject, 'bem',
                    subject + '-5120-5120-5120-bem-sol.fif')
src_fname = op.join(bem_dir, '%s-oct6-src.fif' % subject)
vv_fname = data_path + '/MEG/SQUID/SQUID_resting_state.fif'
vv_erm_fname = data_path + '/MEG/SQUID/SQUID_empty_room.fif'
vv_trans_fname = data_path + '/MEG/SQUID/SQUID-trans.fif'
opm_fname = data_path + '/MEG/OPM/OPM_resting_state_raw.fif'
opm_erm_fname = data_path + '/MEG/OPM/OPM_empty_room_raw.fif'
opm_trans_fname = None
opm_coil_def_fname = op.join(data_path, 'MEG', 'OPM', 'coil_def.dat')

Load data, resample. We will store the raw objects in dicts with entries "vv" and "opm" to simplify housekeeping and simplify looping later.


In [ ]:
raws = dict()
raw_erms = dict()
new_sfreq = 90.  # Nyquist frequency (45 Hz) < line noise freq (50 Hz)
raws['vv'] = mne.io.read_raw_fif(vv_fname, verbose='error')  # ignore naming
raws['vv'].load_data().resample(new_sfreq)
raws['vv'].info['bads'] = ['MEG2233', 'MEG1842']
raw_erms['vv'] = mne.io.read_raw_fif(vv_erm_fname, verbose='error')
raw_erms['vv'].load_data().resample(new_sfreq)
raw_erms['vv'].info['bads'] = ['MEG2233', 'MEG1842']

raws['opm'] = mne.io.read_raw_fif(opm_fname)
raws['opm'].load_data().resample(new_sfreq)
raw_erms['opm'] = mne.io.read_raw_fif(opm_erm_fname)
raw_erms['opm'].load_data().resample(new_sfreq)
# Make sure our assumptions later hold
assert raws['opm'].info['sfreq'] == raws['vv'].info['sfreq']

Do some minimal artifact rejection just for VectorView data


In [ ]:
titles = dict(vv='VectorView', opm='OPM')
ssp_ecg, _ = mne.preprocessing.compute_proj_ecg(
    raws['vv'], tmin=-0.1, tmax=0.1, n_grad=1, n_mag=1)
raws['vv'].add_proj(ssp_ecg, remove_existing=True)
# due to how compute_proj_eog works, it keeps the old projectors, so
# the output contains both projector types (and also the original empty-room
# projectors)
ssp_ecg_eog, _ = mne.preprocessing.compute_proj_eog(
    raws['vv'], n_grad=1, n_mag=1, ch_name='MEG0112')
raws['vv'].add_proj(ssp_ecg_eog, remove_existing=True)
raw_erms['vv'].add_proj(ssp_ecg_eog)
fig = mne.viz.plot_projs_topomap(raws['vv'].info['projs'][-4:],
                                 info=raws['vv'].info)
fig.suptitle(titles['vv'])
fig.subplots_adjust(0.05, 0.05, 0.95, 0.85)

Explore data


In [ ]:
kinds = ('vv', 'opm')
n_fft = next_fast_len(int(round(4 * new_sfreq)))
print('Using n_fft=%d (%0.1f sec)' % (n_fft, n_fft / raws['vv'].info['sfreq']))
for kind in kinds:
    fig = raws[kind].plot_psd(n_fft=n_fft, proj=True)
    fig.suptitle(titles[kind])
    fig.subplots_adjust(0.1, 0.1, 0.95, 0.85)

Alignment and forward


In [ ]:
src = mne.read_source_spaces(src_fname)
# This line removes source-to-source distances that we will not need.
# We only do it here to save a bit of memory, in general this is not required.
del src[0]['dist'], src[1]['dist']
bem = mne.read_bem_solution(bem_fname)
fwd = dict()
trans = dict(vv=vv_trans_fname, opm=opm_trans_fname)
# check alignment and generate forward
with mne.use_coil_def(opm_coil_def_fname):
    for kind in kinds:
        dig = True if kind == 'vv' else False
        fig = mne.viz.plot_alignment(
            raws[kind].info, trans=trans[kind], subject=subject,
            subjects_dir=subjects_dir, dig=dig, coord_frame='mri',
            surfaces=('head', 'white'))
        mne.viz.set_3d_view(figure=fig, azimuth=0, elevation=90,
                            distance=0.6, focalpoint=(0., 0., 0.))
        fwd[kind] = mne.make_forward_solution(
            raws[kind].info, trans[kind], src, bem, eeg=False, verbose=True)
del trans, src, bem

Compute and apply inverse to PSD estimated using multitaper + Welch. Group into frequency bands, then normalize each source point and sensor independently. This makes the value of each sensor point and source location in each frequency band the percentage of the PSD accounted for by that band.


In [ ]:
freq_bands = dict(
    delta=(2, 4), theta=(5, 7), alpha=(8, 12), beta=(15, 29), gamma=(30, 45))
topos = dict(vv=dict(), opm=dict())
stcs = dict(vv=dict(), opm=dict())

snr = 3.
lambda2 = 1. / snr ** 2
for kind in kinds:
    noise_cov = mne.compute_raw_covariance(raw_erms[kind])
    inverse_operator = mne.minimum_norm.make_inverse_operator(
        raws[kind].info, forward=fwd[kind], noise_cov=noise_cov, verbose=True)
    stc_psd, sensor_psd = mne.minimum_norm.compute_source_psd(
        raws[kind], inverse_operator, lambda2=lambda2,
        n_fft=n_fft, dB=False, return_sensor=True, verbose=True)
    topo_norm = sensor_psd.data.sum(axis=1, keepdims=True)
    stc_norm = stc_psd.sum()  # same operation on MNE object, sum across freqs
    # Normalize each source point by the total power across freqs
    for band, limits in freq_bands.items():
        data = sensor_psd.copy().crop(*limits).data.sum(axis=1, keepdims=True)
        topos[kind][band] = mne.EvokedArray(
            100 * data / topo_norm, sensor_psd.info)
        stcs[kind][band] = \
            100 * stc_psd.copy().crop(*limits).sum() / stc_norm.data
    del inverse_operator
del fwd, raws, raw_erms

Now we can make some plots of each frequency band. Note that the OPM head coverage is only over right motor cortex, so only localization of beta is likely to be worthwhile.

Theta


In [ ]:
def plot_band(kind, band):
    """Plot activity within a frequency band on the subject's brain."""
    title = "%s %s\n(%d-%d Hz)" % ((titles[kind], band,) + freq_bands[band])
    topos[kind][band].plot_topomap(
        times=0., scalings=1., cbar_fmt='%0.1f', vmin=0, cmap='inferno',
        time_format=title)
    brain = stcs[kind][band].plot(
        subject=subject, subjects_dir=subjects_dir, views='cau', hemi='both',
        time_label=title, title=title, colormap='inferno',
        clim=dict(kind='percent', lims=(70, 85, 99)))
    brain.show_view(dict(azimuth=0, elevation=0), roll=0)
    return fig, brain


fig_theta, brain_theta = plot_band('vv', 'theta')

Alpha


In [ ]:
fig_alpha, brain_alpha = plot_band('vv', 'alpha')

Beta

Here we also show OPM data, which shows a profile similar to the VectorView data beneath the sensors.


In [ ]:
fig_beta, brain_beta = plot_band('vv', 'beta')
fig_beta_opm, brain_beta_opm = plot_band('opm', 'beta')

Gamma


In [ ]:
fig_gamma, brain_gamma = plot_band('vv', 'gamma')

References

.. [1] Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM. Brainstorm: A User-Friendly Application for MEG/EEG Analysis. Computational Intelligence and Neuroscience, vol. 2011, Article ID 879716, 13 pages, 2011. doi:10.1155/2011/879716