In [ ]:
%matplotlib inline
In [ ]:
# Authors: Denis Engemann <denis.engemann@gmail.com>
#
# License: BSD (3-clause)
import mne
from mne import io
from mne.datasets import sample
print(__doc__)
Set parameters
In [ ]:
data_path = sample.data_path()
raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif'
event_fname = data_path + '/MEG/sample/sample_audvis_raw-eve.fif'
# Setup for reading the raw data
raw = io.Raw(raw_fname)
events = mne.read_events(event_fname)
tmin, tmax, event_id = -1., 1., 1
raw.info['bads'] += ['MEG 2443'] # bads
epochs = mne.Epochs(raw, events, event_id, tmin, tmax,
proj=True, baseline=(None, 0), preload=True,
reject=dict(grad=4000e-13, eog=150e-6))
# Let's first check out all channel types by averaging across epochs.
epochs.plot_psd(fmin=2, fmax=200)
# picks MEG gradiometers
picks = mne.pick_types(raw.info, meg='grad', eeg=False, eog=False,
stim=False, exclude='bads')
# Now let's take a look at the spatial distributions of the psd.
epochs.plot_psd_topomap(ch_type='grad', normalize=True)