In [ ]:
%matplotlib inline
Here we compute the resting state from raw for data recorded using
a Neuromag VectorView system and a custom OPM system.
The pipeline is meant to mostly follow the Brainstorm [1]_
OMEGA resting tutorial pipeline <bst_omega_>_.
The steps we use are:
In [ ]:
# Authors: Denis Engemann <denis.engemann@gmail.com>
# Luke Bloy <luke.bloy@gmail.com>
# Eric Larson <larson.eric.d@gmail.com>
#
# License: BSD (3-clause)
import os.path as op
from mne.filter import next_fast_len
import mne
print(__doc__)
data_path = mne.datasets.opm.data_path()
subject = 'OPM_sample'
subjects_dir = op.join(data_path, 'subjects')
bem_dir = op.join(subjects_dir, subject, 'bem')
bem_fname = op.join(subjects_dir, subject, 'bem',
subject + '-5120-5120-5120-bem-sol.fif')
src_fname = op.join(bem_dir, '%s-oct6-src.fif' % subject)
vv_fname = data_path + '/MEG/SQUID/SQUID_resting_state.fif'
vv_erm_fname = data_path + '/MEG/SQUID/SQUID_empty_room.fif'
vv_trans_fname = data_path + '/MEG/SQUID/SQUID-trans.fif'
opm_fname = data_path + '/MEG/OPM/OPM_resting_state_raw.fif'
opm_erm_fname = data_path + '/MEG/OPM/OPM_empty_room_raw.fif'
opm_trans_fname = None
opm_coil_def_fname = op.join(data_path, 'MEG', 'OPM', 'coil_def.dat')
Load data, resample. We will store the raw objects in dicts with entries "vv" and "opm" to simplify housekeeping and simplify looping later.
In [ ]:
raws = dict()
raw_erms = dict()
new_sfreq = 90. # Nyquist frequency (45 Hz) < line noise freq (50 Hz)
raws['vv'] = mne.io.read_raw_fif(vv_fname, verbose='error') # ignore naming
raws['vv'].load_data().resample(new_sfreq)
raws['vv'].info['bads'] = ['MEG2233', 'MEG1842']
raw_erms['vv'] = mne.io.read_raw_fif(vv_erm_fname, verbose='error')
raw_erms['vv'].load_data().resample(new_sfreq)
raw_erms['vv'].info['bads'] = ['MEG2233', 'MEG1842']
raws['opm'] = mne.io.read_raw_fif(opm_fname)
raws['opm'].load_data().resample(new_sfreq)
raw_erms['opm'] = mne.io.read_raw_fif(opm_erm_fname)
raw_erms['opm'].load_data().resample(new_sfreq)
# Make sure our assumptions later hold
assert raws['opm'].info['sfreq'] == raws['vv'].info['sfreq']
Do some minimal artifact rejection just for VectorView data
In [ ]:
titles = dict(vv='VectorView', opm='OPM')
ssp_ecg, _ = mne.preprocessing.compute_proj_ecg(
raws['vv'], tmin=-0.1, tmax=0.1, n_grad=1, n_mag=1)
raws['vv'].add_proj(ssp_ecg, remove_existing=True)
# due to how compute_proj_eog works, it keeps the old projectors, so
# the output contains both projector types (and also the original empty-room
# projectors)
ssp_ecg_eog, _ = mne.preprocessing.compute_proj_eog(
raws['vv'], n_grad=1, n_mag=1, ch_name='MEG0112')
raws['vv'].add_proj(ssp_ecg_eog, remove_existing=True)
raw_erms['vv'].add_proj(ssp_ecg_eog)
fig = mne.viz.plot_projs_topomap(raws['vv'].info['projs'][-4:],
info=raws['vv'].info)
fig.suptitle(titles['vv'])
fig.subplots_adjust(0.05, 0.05, 0.95, 0.85)
Explore data
In [ ]:
kinds = ('vv', 'opm')
n_fft = next_fast_len(int(round(4 * new_sfreq)))
print('Using n_fft=%d (%0.1f sec)' % (n_fft, n_fft / raws['vv'].info['sfreq']))
for kind in kinds:
fig = raws[kind].plot_psd(n_fft=n_fft, proj=True)
fig.suptitle(titles[kind])
fig.subplots_adjust(0.1, 0.1, 0.95, 0.85)
In [ ]:
# Here we use a reduced size source space (oct5) just for speed
src = mne.setup_source_space(
subject, 'oct5', add_dist=False, subjects_dir=subjects_dir)
# This line removes source-to-source distances that we will not need.
# We only do it here to save a bit of memory, in general this is not required.
del src[0]['dist'], src[1]['dist']
bem = mne.read_bem_solution(bem_fname)
fwd = dict()
trans = dict(vv=vv_trans_fname, opm=opm_trans_fname)
# check alignment and generate forward
with mne.use_coil_def(opm_coil_def_fname):
for kind in kinds:
dig = True if kind == 'vv' else False
fig = mne.viz.plot_alignment(
raws[kind].info, trans=trans[kind], subject=subject,
subjects_dir=subjects_dir, dig=dig, coord_frame='mri',
surfaces=('head', 'white'))
mne.viz.set_3d_view(figure=fig, azimuth=0, elevation=90,
distance=0.6, focalpoint=(0., 0., 0.))
fwd[kind] = mne.make_forward_solution(
raws[kind].info, trans[kind], src, bem, eeg=False, verbose=True)
del trans, src, bem
Compute and apply inverse to PSD estimated using multitaper + Welch. Group into frequency bands, then normalize each source point and sensor independently. This makes the value of each sensor point and source location in each frequency band the percentage of the PSD accounted for by that band.
In [ ]:
freq_bands = dict(
delta=(2, 4), theta=(5, 7), alpha=(8, 12), beta=(15, 29), gamma=(30, 45))
topos = dict(vv=dict(), opm=dict())
stcs = dict(vv=dict(), opm=dict())
snr = 3.
lambda2 = 1. / snr ** 2
for kind in kinds:
noise_cov = mne.compute_raw_covariance(raw_erms[kind])
inverse_operator = mne.minimum_norm.make_inverse_operator(
raws[kind].info, forward=fwd[kind], noise_cov=noise_cov, verbose=True)
stc_psd, sensor_psd = mne.minimum_norm.compute_source_psd(
raws[kind], inverse_operator, lambda2=lambda2,
n_fft=n_fft, dB=False, return_sensor=True, verbose=True)
topo_norm = sensor_psd.data.sum(axis=1, keepdims=True)
stc_norm = stc_psd.sum() # same operation on MNE object, sum across freqs
# Normalize each source point by the total power across freqs
for band, limits in freq_bands.items():
data = sensor_psd.copy().crop(*limits).data.sum(axis=1, keepdims=True)
topos[kind][band] = mne.EvokedArray(
100 * data / topo_norm, sensor_psd.info)
stcs[kind][band] = \
100 * stc_psd.copy().crop(*limits).sum() / stc_norm.data
del inverse_operator
del fwd, raws, raw_erms
In [ ]:
def plot_band(kind, band):
"""Plot activity within a frequency band on the subject's brain."""
title = "%s %s\n(%d-%d Hz)" % ((titles[kind], band,) + freq_bands[band])
topos[kind][band].plot_topomap(
times=0., scalings=1., cbar_fmt='%0.1f', vmin=0, cmap='inferno',
time_format=title)
brain = stcs[kind][band].plot(
subject=subject, subjects_dir=subjects_dir, views='cau', hemi='both',
time_label=title, title=title, colormap='inferno',
clim=dict(kind='percent', lims=(70, 85, 99)), smoothing_steps=10)
brain.show_view(dict(azimuth=0, elevation=0), roll=0)
return fig, brain
fig_theta, brain_theta = plot_band('vv', 'theta')
In [ ]:
fig_alpha, brain_alpha = plot_band('vv', 'alpha')
In [ ]:
fig_beta, brain_beta = plot_band('vv', 'beta')
fig_beta_opm, brain_beta_opm = plot_band('opm', 'beta')
In [ ]:
fig_gamma, brain_gamma = plot_band('vv', 'gamma')