In [ ]:
%matplotlib inline

EEG processing and Event Related Potentials (ERPs)

For a generic introduction to the computation of ERP and ERF see tut_epoching_and_averaging. :depth: 1


In [ ]:
import mne
from mne.datasets import sample

Setup for reading the raw data


In [ ]:
data_path = sample.data_path()
raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif'
event_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw-eve.fif'
# these data already have an EEG average reference
raw = mne.io.read_raw_fif(raw_fname, preload=True)

Let's restrict the data to the EEG channels


In [ ]:
raw.pick_types(meg=False, eeg=True, eog=True)

By looking at the measurement info you will see that we have now 59 EEG channels and 1 EOG channel


In [ ]:
print(raw.info)

In practice it's quite common to have some EEG channels that are actually EOG channels. To change a channel type you can use the :func:mne.io.Raw.set_channel_types method. For example to treat an EOG channel as EEG you can change its type using


In [ ]:
raw.set_channel_types(mapping={'EOG 061': 'eeg'})
print(raw.info)

And to change the name of the EOG channel


In [ ]:
raw.rename_channels(mapping={'EOG 061': 'EOG'})

Let's reset the EOG channel back to EOG type.


In [ ]:
raw.set_channel_types(mapping={'EOG': 'eog'})

The EEG channels in the sample dataset already have locations. These locations are available in the 'loc' of each channel description. For the first channel we get


In [ ]:
print(raw.info['chs'][0]['loc'])

And it's actually possible to plot the channel locations using :func:mne.io.Raw.plot_sensors. In the case where your data don't have locations you can use one of the standard :class:Montages <mne.channels.DigMontage> shipped with MNE. See plot_montage and tut-eeg-fsaverage-source-modeling.


In [ ]:
raw.plot_sensors()
raw.plot_sensors('3d')  # in 3D

Setting EEG reference

Let's first remove the reference from our Raw object.

This explicitly prevents MNE from adding a default EEG average reference required for source localization.


In [ ]:
raw_no_ref, _ = mne.set_eeg_reference(raw, [])

We next define Epochs and compute an ERP for the left auditory condition.


In [ ]:
reject = dict(eeg=180e-6, eog=150e-6)
event_id, tmin, tmax = {'left/auditory': 1}, -0.2, 0.5
events = mne.read_events(event_fname)
epochs_params = dict(events=events, event_id=event_id, tmin=tmin, tmax=tmax,
                     reject=reject)

evoked_no_ref = mne.Epochs(raw_no_ref, **epochs_params).average()
del raw_no_ref  # save memory

title = 'EEG Original reference'
evoked_no_ref.plot(titles=dict(eeg=title), time_unit='s')
evoked_no_ref.plot_topomap(times=[0.1], size=3., title=title, time_unit='s')

Average reference: This is normally added by default, but can also be added explicitly.


In [ ]:
raw.del_proj()
raw_car, _ = mne.set_eeg_reference(raw, 'average', projection=True)
evoked_car = mne.Epochs(raw_car, **epochs_params).average()
del raw_car  # save memory

title = 'EEG Average reference'
evoked_car.plot(titles=dict(eeg=title), time_unit='s')
evoked_car.plot_topomap(times=[0.1], size=3., title=title, time_unit='s')

Custom reference: Use the mean of channels EEG 001 and EEG 002 as a reference


In [ ]:
raw_custom, _ = mne.set_eeg_reference(raw, ['EEG 001', 'EEG 002'])
evoked_custom = mne.Epochs(raw_custom, **epochs_params).average()
del raw_custom  # save memory

title = 'EEG Custom reference'
evoked_custom.plot(titles=dict(eeg=title), time_unit='s')
evoked_custom.plot_topomap(times=[0.1], size=3., title=title, time_unit='s')

Evoked arithmetic (e.g. differences)

Trial subsets from Epochs can be selected using 'tags' separated by '/'. Evoked objects support basic arithmetic. First, we create an Epochs object containing 4 conditions.


In [ ]:
event_id = {'left/auditory': 1, 'right/auditory': 2,
            'left/visual': 3, 'right/visual': 4}
epochs_params = dict(events=events, event_id=event_id, tmin=tmin, tmax=tmax,
                     reject=reject)
epochs = mne.Epochs(raw, **epochs_params)

print(epochs)

Next, we create averages of stimulation-left vs stimulation-right trials. We can use basic arithmetic to, for example, construct and plot difference ERPs.


In [ ]:
left, right = epochs["left"].average(), epochs["right"].average()

# create and plot difference ERP
joint_kwargs = dict(ts_args=dict(time_unit='s'),
                    topomap_args=dict(time_unit='s'))
mne.combine_evoked([left, -right], weights='equal').plot_joint(**joint_kwargs)

This is an equal-weighting difference. If you have imbalanced trial numbers, you could also consider either equalizing the number of events per condition (using :meth:epochs.equalize_event_counts <mne.Epochs.equalize_event_counts>). As an example, first, we create individual ERPs for each condition.


In [ ]:
aud_l = epochs["auditory", "left"].average()
aud_r = epochs["auditory", "right"].average()
vis_l = epochs["visual", "left"].average()
vis_r = epochs["visual", "right"].average()

all_evokeds = [aud_l, aud_r, vis_l, vis_r]
print(all_evokeds)

This can be simplified with a Python list comprehension:


In [ ]:
all_evokeds = [epochs[cond].average() for cond in sorted(event_id.keys())]
print(all_evokeds)

# Then, we construct and plot an unweighted average of left vs. right trials
# this way, too:
mne.combine_evoked(
    [aud_l, -aud_r, vis_l, -vis_r], weights='equal').plot_joint(**joint_kwargs)

Often, it makes sense to store Evoked objects in a dictionary or a list - either different conditions, or different subjects.


In [ ]:
# If they are stored in a list, they can be easily averaged, for example,
# for a grand average across subjects (or conditions).
grand_average = mne.grand_average(all_evokeds)
mne.write_evokeds('/tmp/tmp-ave.fif', all_evokeds)

# If Evokeds objects are stored in a dictionary, they can be retrieved by name.
all_evokeds = dict((cond, epochs[cond].average()) for cond in event_id)
print(all_evokeds['left/auditory'])

# Besides for explicit access, this can be used for example to set titles.
for cond in all_evokeds:
    all_evokeds[cond].plot_joint(title=cond, **joint_kwargs)