In [ ]:
%matplotlib inline

.. _tut_erp:

EEG processing and Event Related Potentials (ERPs)

For a generic introduction to the computation of ERP and ERF see :ref:tut_epoching_and_averaging. Here we cover the specifics of EEG, namely:

- setting the reference
- using standard montages :func:`mne.channels.Montage`
- Evoked arithmetic (e.g. differences)

In [ ]:
import mne
from mne.datasets import sample

Setup for reading the raw data


In [ ]:
data_path = sample.data_path()
raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif'
event_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw-eve.fif'
raw = mne.io.read_raw_fif(raw_fname, add_eeg_ref=True, preload=True)

Let's restrict the data to the EEG channels


In [ ]:
raw.pick_types(meg=False, eeg=True, eog=True)

By looking at the measurement info you will see that we have now 59 EEG channels and 1 EOG channel


In [ ]:
print(raw.info)

In practice it's quite common to have some EEG channels that are actually EOG channels. To change a channel type you can use the :func:mne.io.Raw.set_channel_types method. For example to treat an EOG channel as EEG you can change its type using


In [ ]:
raw.set_channel_types(mapping={'EOG 061': 'eeg'})
print(raw.info)

And to change the nameo of the EOG channel


In [ ]:
raw.rename_channels(mapping={'EOG 061': 'EOG'})

Let's reset the EOG channel back to EOG type.


In [ ]:
raw.set_channel_types(mapping={'EOG': 'eog'})

The EEG channels in the sample dataset already have locations. These locations are available in the 'loc' of each channel description. For the first channel we get


In [ ]:
print(raw.info['chs'][0]['loc'])

And it's actually possible to plot the channel locations using the :func:mne.io.Raw.plot_sensors method


In [ ]:
raw.plot_sensors()
raw.plot_sensors('3d')  # in 3D

Setting EEG montage

In the case where your data don't have locations you can set them using a :func:mne.channels.Montage. MNE comes with a set of default montages. To read one of them do:


In [ ]:
montage = mne.channels.read_montage('standard_1020')
print(montage)

To apply a montage on your data use the :func:mne.io.set_montage function. Here don't actually call this function as our demo dataset already contains good EEG channel locations.

Next we'll explore the definition of the reference.

Setting EEG reference

Let's first remove the reference from our Raw object.

This explicitly prevents MNE from adding a default EEG average reference required for source localization.


In [ ]:
raw_no_ref, _ = mne.io.set_eeg_reference(raw, [])

We next define Epochs and compute an ERP for the left auditory condition.


In [ ]:
reject = dict(eeg=180e-6, eog=150e-6)
event_id, tmin, tmax = {'left/auditory': 1}, -0.2, 0.5
events = mne.read_events(event_fname)
epochs_params = dict(events=events, event_id=event_id, tmin=tmin, tmax=tmax,
                     reject=reject)

evoked_no_ref = mne.Epochs(raw_no_ref, **epochs_params).average()
del raw_no_ref  # save memory

title = 'EEG Original reference'
evoked_no_ref.plot(titles=dict(eeg=title))
evoked_no_ref.plot_topomap(times=[0.1], size=3., title=title)

Average reference: This is normally added by default, but can also be added explicitly.


In [ ]:
raw_car, _ = mne.io.set_eeg_reference(raw)
evoked_car = mne.Epochs(raw_car, **epochs_params).average()
del raw_car  # save memory

title = 'EEG Average reference'
evoked_car.plot(titles=dict(eeg=title))
evoked_car.plot_topomap(times=[0.1], size=3., title=title)

Custom reference: Use the mean of channels EEG 001 and EEG 002 as a reference


In [ ]:
raw_custom, _ = mne.io.set_eeg_reference(raw, ['EEG 001', 'EEG 002'])
evoked_custom = mne.Epochs(raw_custom, **epochs_params).average()
del raw_custom  # save memory

title = 'EEG Custom reference'
evoked_custom.plot(titles=dict(eeg=title))
evoked_custom.plot_topomap(times=[0.1], size=3., title=title)

Evoked arithmetics

Trial subsets from Epochs can be selected using 'tags' separated by '/'. Evoked objects support basic arithmetic. First, we create an Epochs object containing 4 conditions.


In [ ]:
event_id = {'left/auditory': 1, 'right/auditory': 2,
            'left/visual': 3, 'right/visual': 4}
epochs_params = dict(events=events, event_id=event_id, tmin=tmin, tmax=tmax,
                     reject=reject)
epochs = mne.Epochs(raw, **epochs_params)

print(epochs)

Next, we create averages of stimulation-left vs stimulation-right trials. We can use basic arithmetic to, for example, construct and plot difference ERPs.


In [ ]:
left, right = epochs["left"].average(), epochs["right"].average()

(left - right).plot_joint()  # create and plot difference ERP

Note that by default, this is a trial-weighted average. If you have imbalanced trial numbers, consider either equalizing the number of events per condition (using Epochs.equalize_event_counts), or the combine_evoked function. As an example, first, we create individual ERPs for each condition.


In [ ]:
aud_l = epochs["auditory", "left"].average()
aud_r = epochs["auditory", "right"].average()
vis_l = epochs["visual", "left"].average()
vis_r = epochs["visual", "right"].average()

all_evokeds = [aud_l, aud_r, vis_l, vis_r]

# This could have been much simplified with a list comprehension:
# all_evokeds = [epochs[cond] for cond in event_id]

# Then, we construct and plot an unweighted average of left vs. right trials.
mne.combine_evoked(all_evokeds, weights=(1, -1, 1, -1)).plot_joint()

Often, it makes sense to store Evoked objects in a dictionary or a list - either different conditions, or different subjects.


In [ ]:
# If they are stored in a list, they can be easily averaged, for example,
# for a grand average across subjects (or conditions).
grand_average = mne.grand_average(all_evokeds)
mne.write_evokeds('/tmp/tmp-ave.fif', all_evokeds)

# If Evokeds objects are stored in a dictionary, they can be retrieved by name.
all_evokeds = dict((cond, epochs[cond].average()) for cond in event_id)
print(all_evokeds['left/auditory'])

# Besides for explicit access, this can be used for example to set titles.
for cond in all_evokeds:
    all_evokeds[cond].plot_joint(title=cond)