In [ ]:
%matplotlib inline

===========================================================

Plot single trial activity, grouped by ROI and sorted by RT

This will produce what is sometimes called an event related potential / field (ERP/ERF) image.

The EEGLAB example file - containing an experiment with button press responses to simple visual stimuli - is read in and response times are calculated. Regions of Interest are determined by the channel types (in 10/20 channel notation, even channels are right, odd are left, and 'z' are central). The median and the Global Field Power within each channel group is calculated, and the trials are plotted, sorting by response time.


In [ ]:
# Authors: Jona Sassenhagen <jona.sassenhagen@gmail.com>
#
# License: BSD (3-clause)

import mne
from mne.event import define_target_events
from mne.channels import make_1020_channel_selections

print(__doc__)

Load EEGLAB example data (a small EEG dataset)


In [ ]:
data_path = mne.datasets.testing.data_path()
fname = data_path + "/EEGLAB/test_raw.set"
montage = data_path + "/EEGLAB/test_chans.locs"

event_id = {"rt": 1, "square": 2}  # must be specified for str events
eog = {"FPz", "EOG1", "EOG2"}
raw = mne.io.read_raw_eeglab(fname, eog=eog, montage=montage,
                             stim_channel=False)
events = mne.events_from_annotations(raw, event_id)[0]

Create Epochs


In [ ]:
# define target events:
# 1. find response times: distance between "square" and "rt" events
# 2. extract A. "square" events B. followed by a button press within 700 msec
tmax = .7
sfreq = raw.info["sfreq"]
reference_id, target_id = 2, 1
new_events, rts = define_target_events(events, reference_id, target_id, sfreq,
                                       tmin=0., tmax=tmax, new_id=2)

epochs = mne.Epochs(raw, events=new_events, tmax=tmax + .1,
                    event_id={"square": 2})

Plot using GFP


In [ ]:
# Parameters for plotting
order = rts.argsort()  # sorting from fast to slow trials

selections = make_1020_channel_selections(epochs.info, midline="12z")

# The actual plots (GFP)
epochs.plot_image(group_by=selections, order=order, sigma=1.5,
                  overlay_times=rts / 1000., combine='gfp',
                  ts_args=dict(vlines=[0, rts.mean() / 1000.]))

Plot using median


In [ ]:
epochs.plot_image(group_by=selections, order=order, sigma=1.5,
                  overlay_times=rts / 1000., combine='median',
                  ts_args=dict(vlines=[0, rts.mean() / 1000.]))