In [ ]:
%matplotlib inline
In [ ]:
# Authors: Eric Larson <larson.eric.d@gmail.com>
# Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Mark Wronkiewicz <wronk.mark@gmail.com>
#
# License: BSD (3-clause)
import mne
from mne.preprocessing import maxwell_filter
print(__doc__)
data_path = mne.datasets.sample.data_path()
Set parameters
In [ ]:
raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif'
ctc_fname = data_path + '/SSS/ct_sparse_mgh.fif'
fine_cal_fname = data_path + '/SSS/sss_cal_mgh.dat'
# Preprocess with Maxwell filtering
raw = mne.io.Raw(raw_fname)
raw.info['bads'] = ['MEG 2443', 'EEG 053', 'MEG 1032', 'MEG 2313'] # set bads
# Here we don't use tSSS (set st_duration) because MGH data is very clean
raw_sss = maxwell_filter(raw, cross_talk=ctc_fname, calibration=fine_cal_fname)
# Select events to extract epochs from, pick M/EEG channels, and plot evoked
tmin, tmax = -0.2, 0.5
event_id = {'Auditory/Left': 1}
events = mne.find_events(raw, 'STI 014')
picks = mne.pick_types(raw.info, meg=True, eeg=False, stim=False, eog=True,
include=[], exclude='bads')
for r, kind in zip((raw, raw_sss), ('Raw data', 'Maxwell filtered data')):
epochs = mne.Epochs(r, events, event_id, tmin, tmax, picks=picks,
baseline=(None, 0), reject=dict(eog=150e-6),
preload=False)
evoked = epochs.average()
evoked.plot(window_title=kind)