In [ ]:
%matplotlib inline
In [ ]:
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#
# License: BSD (3-clause)
import numpy as np
import matplotlib.pyplot as plt
import mne
from mne import io
from mne.datasets import sample
print(__doc__)
data_path = sample.data_path()
Set parameters
In [ ]:
raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif'
# Setup for reading the raw data
raw = io.read_raw_fif(raw_fname)
event_id = 998
eog_events = mne.preprocessing.find_eog_events(raw, event_id)
# Read epochs
picks = mne.pick_types(raw.info, meg=False, eeg=False, stim=False, eog=True,
exclude='bads')
tmin, tmax = -0.2, 0.2
epochs = mne.Epochs(raw, eog_events, event_id, tmin, tmax, picks=picks)
data = epochs.get_data()
print("Number of detected EOG artifacts : %d" % len(data))
Plot EOG artifacts
In [ ]:
plt.plot(1e3 * epochs.times, np.squeeze(data).T)
plt.xlabel('Times (ms)')
plt.ylabel('EOG (muV)')
plt.show()