In [ ]:
%matplotlib inline
In [ ]:
# Authors: Mainak Jas <mainak@neuro.hut.fi>
#
# License: BSD (3-clause)
import numpy as np
import matplotlib.pyplot as plt
import mne
from mne.realtime import MockRtClient, RtEpochs
from mne.datasets import sample
print(__doc__)
# Fiff file to simulate the realtime client
data_path = sample.data_path()
raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif'
raw = mne.io.read_raw_fif(raw_fname, preload=True)
tmin, tmax = -0.2, 0.5
event_id = dict(aud_l=1, vis_l=3)
tr_percent = 60 # Training percentage
min_trials = 10 # minimum trials after which decoding should start
# select gradiometers
picks = mne.pick_types(raw.info, meg='grad', eeg=False, eog=True,
stim=True, exclude=raw.info['bads'])
# create the mock-client object
rt_client = MockRtClient(raw)
# create the real-time epochs object
rt_epochs = RtEpochs(rt_client, event_id, tmin, tmax, picks=picks, decim=1,
reject=dict(grad=4000e-13, eog=150e-6))
# start the acquisition
rt_epochs.start()
# send raw buffers
rt_client.send_data(rt_epochs, picks, tmin=0, tmax=90, buffer_size=1000)
# Decoding in sensor space using a linear SVM
n_times = len(rt_epochs.times)
from sklearn import preprocessing # noqa
from sklearn.svm import SVC # noqa
from sklearn.pipeline import Pipeline # noqa
from sklearn.cross_validation import cross_val_score, ShuffleSplit # noqa
from mne.decoding import EpochsVectorizer, FilterEstimator # noqa
scores_x, scores, std_scores = [], [], []
filt = FilterEstimator(rt_epochs.info, 1, 40)
scaler = preprocessing.StandardScaler()
vectorizer = EpochsVectorizer()
clf = SVC(C=1, kernel='linear')
concat_classifier = Pipeline([('filter', filt), ('vector', vectorizer),
('scaler', scaler), ('svm', clf)])
data_picks = mne.pick_types(rt_epochs.info, meg='grad', eeg=False, eog=True,
stim=False, exclude=raw.info['bads'])
for ev_num, ev in enumerate(rt_epochs.iter_evoked()):
print("Just got epoch %d" % (ev_num + 1))
if ev_num == 0:
X = ev.data[None, data_picks, :]
y = int(ev.comment) # the comment attribute contains the event_id
else:
X = np.concatenate((X, ev.data[None, data_picks, :]), axis=0)
y = np.append(y, int(ev.comment))
if ev_num >= min_trials:
cv = ShuffleSplit(len(y), 5, test_size=0.2, random_state=42)
scores_t = cross_val_score(concat_classifier, X, y, cv=cv,
n_jobs=1) * 100
std_scores.append(scores_t.std())
scores.append(scores_t.mean())
scores_x.append(ev_num)
# Plot accuracy
plt.clf()
plt.plot(scores_x, scores, '+', label="Classif. score")
plt.hold(True)
plt.plot(scores_x, scores)
plt.axhline(50, color='k', linestyle='--', label="Chance level")
hyp_limits = (np.asarray(scores) - np.asarray(std_scores),
np.asarray(scores) + np.asarray(std_scores))
plt.fill_between(scores_x, hyp_limits[0], y2=hyp_limits[1],
color='b', alpha=0.5)
plt.xlabel('Trials')
plt.ylabel('Classification score (% correct)')
plt.xlim([min_trials, 50])
plt.ylim([30, 105])
plt.title('Real-time decoding')
plt.show(block=False)
plt.pause(0.01)
plt.show()