In [ ]:
%matplotlib inline

=================================

Decoding sensor space data (MVPA)

Decoding, a.k.a MVPA or supervised machine learning applied to MEG data in sensor space. Here the classifier is applied to every time point.


In [ ]:
import numpy as np
import matplotlib.pyplot as plt

from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression

import mne
from mne.datasets import sample
from mne.decoding import (SlidingEstimator, GeneralizingEstimator,
                          cross_val_multiscore, LinearModel, get_coef)

data_path = sample.data_path()

plt.close('all')

# sphinx_gallery_thumbnail_number = 4

Set parameters


In [ ]:
raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif'
tmin, tmax = -0.200, 0.500
event_id = dict(audio_left=1, visual_left=3)

# Setup for reading the raw data
raw = mne.io.read_raw_fif(raw_fname, preload=True)

# The subsequent decoding analyses only capture evoked responses, so we can
# low-pass the MEG data. Usually a value more like 40 Hz would be used,
# but here low-pass at 20 so we can more heavily decimate, and allow
# the examlpe to run faster.
raw.filter(None, 20., fir_design='firwin')
events = mne.find_events(raw, 'STI 014')

# Set up pick list: EEG + MEG - bad channels (modify to your needs)
raw.info['bads'] += ['MEG 2443', 'EEG 053']  # bads + 2 more
picks = mne.pick_types(raw.info, meg='grad', eeg=False, stim=True, eog=True,
                       exclude='bads')

# Read epochs
epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True,
                    picks=picks, baseline=(None, 0.), preload=True,
                    reject=dict(grad=4000e-13, eog=150e-6), decim=10)
epochs.pick_types(meg=True, exclude='bads')

Temporal decoding

We'll use a Logistic Regression for a binary classification as machine learning model.


In [ ]:
# We will train the classifier on all left visual vs auditory trials on MEG

X = epochs.get_data()  # MEG signals: n_epochs, n_channels, n_times
y = epochs.events[:, 2]  # target: Audio left or right

clf = make_pipeline(StandardScaler(), LogisticRegression())

time_decod = SlidingEstimator(clf, n_jobs=1, scoring='roc_auc')

scores = cross_val_multiscore(time_decod, X, y, cv=5, n_jobs=1)

# Mean scores across cross-validation splits
scores = np.mean(scores, axis=0)

# Plot
fig, ax = plt.subplots()
ax.plot(epochs.times, scores, label='score')
ax.axhline(.5, color='k', linestyle='--', label='chance')
ax.set_xlabel('Times')
ax.set_ylabel('AUC')  # Area Under the Curve
ax.legend()
ax.axvline(.0, color='k', linestyle='-')
ax.set_title('Sensor space decoding')
plt.show()

# You can retrieve the spatial filters and spatial patterns if you explicitly
# use a LinearModel
clf = make_pipeline(StandardScaler(), LinearModel(LogisticRegression()))
time_decod = SlidingEstimator(clf, n_jobs=1, scoring='roc_auc')
time_decod.fit(X, y)

coef = get_coef(time_decod, 'patterns_', inverse_transform=True)
evoked = mne.EvokedArray(coef, epochs.info, tmin=epochs.times[0])
evoked.plot_joint(times=np.arange(0., .500, .100), title='patterns')

Temporal Generalization

This runs the analysis used in [1] and further detailed in [2]

The idea is to fit the models on each time instant and see how it generalizes to any other time point.


In [ ]:
# define the Temporal Generalization object
time_gen = GeneralizingEstimator(clf, n_jobs=1, scoring='roc_auc')

scores = cross_val_multiscore(time_gen, X, y, cv=5, n_jobs=1)

# Mean scores across cross-validation splits
scores = np.mean(scores, axis=0)

# Plot the diagonal (it's exactly the same as the time-by-time decoding above)
fig, ax = plt.subplots()
ax.plot(epochs.times, np.diag(scores), label='score')
ax.axhline(.5, color='k', linestyle='--', label='chance')
ax.set_xlabel('Times')
ax.set_ylabel('AUC')
ax.legend()
ax.axvline(.0, color='k', linestyle='-')
ax.set_title('Decoding MEG sensors over time')
plt.show()

# Plot the full matrix
fig, ax = plt.subplots(1, 1)
im = ax.imshow(scores, interpolation='lanczos', origin='lower', cmap='RdBu_r',
               extent=epochs.times[[0, -1, 0, -1]], vmin=0., vmax=1.)
ax.set_xlabel('Testing Time (s)')
ax.set_ylabel('Training Time (s)')
ax.set_title('Temporal Generalization')
ax.axvline(0, color='k')
ax.axhline(0, color='k')
plt.colorbar(im, ax=ax)
plt.show()

Exercise

  • Can you improve the performance using full epochs and a common spatial pattern (CSP) used by most BCI systems?
  • Explore other datasets from MNE (e.g. Face dataset from SPM to predict Face vs. Scrambled)

Have a look at the example sphx_glr_auto_examples_decoding_plot_decoding_csp_space.py

References

.. [1] Jean-Remi King, Alexandre Gramfort, Aaron Schurger, Lionel Naccache and Stanislas Dehaene, "Two distinct dynamic modes subtend the detection of unexpected sounds", PLOS ONE, 2013, http://www.ncbi.nlm.nih.gov/pubmed/24475052

.. [2] King & Dehaene (2014) 'Characterizing the dynamics of mental representations: the temporal generalization method', Trends In Cognitive Sciences, 18(4), 203-210. http://www.ncbi.nlm.nih.gov/pubmed/24593982