Template for the tutorial 4-3

Dalitz plot

Plotting functions


In [1]:
using PyPlot
using PyCall
@pyimport numpy.ma as ma

# simple flat plot
function Plot(f, x)
    fx=[f(xi) for xi in x]
    plot(x, fx)
end

# plot of function of 2 variables, 3D plot
function Plot(f, x, y)
    fx=[[xi, yi, f(xi,yi)] for xi in x for yi in y]
    surf([fxi[1] for fxi in fx], [fxi[2] for fxi in fx], [fxi[3] for fxi in fx])
end

# plot of function of 2 variables, color-codded
function DensityPlot(f, x, y)
    xy = [[xi, yi] for xi in x, yi in y]
    zv = [f((xy[i,j][1]+xy[i+1,j+1][1])/2.,
            (xy[i,j][2]+xy[i+1,j+1][2])/2.) for i in 1:(size(xy,1)-1), j in 1:(size(xy,2)-1)]
    zvmask = pycall(ma.array, Any, zv, mask=isnan.(zv))
    xv = [xy[i,j][1] for i in 1:size(xy,1), j in 1:size(xy,2)]
    yv = [xy[i,j][2] for i in 1:size(xy,1), j in 1:size(xy,2)]
    pcolor(xv, yv, zvmask)
end


WARNING: Method definition macroexpand(Module, Any) in module Compat at /home/mikhasenko/.julia/v0.6/Compat/src/Compat.jl:1491 overwritten in module MacroTools at /home/mikhasenko/.julia/v0.6/MacroTools/src/utils.jl:64.
Out[1]:
DensityPlot (generic function with 1 method)

Kinematics functions


In [2]:
# K\"allen function
λ(x,y,z)=x^2+y^2+z^2-2*x*y-2*y*z-2*z*x

# Break-up momentum
psq(x,y,z)=λ(x,y,z)/(4*x);

# scattering angle in the s-channel
cosθsq(s,t,Msq,m1sq,m2sq,m3sq)=(2s*(t-m2sq-m3sq)-(s+m2sq-m1sq)*(Msq-s-m3sq))^2/(λ(s,m1sq,m2sq)*λ(Msq,s,m3sq))

# inverse to previous one
function t(s,cosθ,Msq,m1sq,m2sq,m3sq)
    e2 = (s+m2sq-m1sq)/(2*sqrt(s))
    e3 = (Msq-s-m3sq)/(2*sqrt(s))
    p2 = sqrt(λ(s,m1sq,m2sq)/(4*s))
    p3 = sqrt(λ(Msq,s,m3sq)/(4*s))
    m2sq+m3sq+2*e2*e3-2*p2*p3*cosθ
end

# border function returns 0 or 1 whether the dacay is forbidden or allowed
function border(s,t,Msq,m1sq,m2sq,m3sq)
    val = 0.0
    s =sqrt(s); t =sqrt(t)
    m1 = sqrt(m1sq); m2 = sqrt(m2sq); m3 = sqrt(m3sq)
    Mtot = sqrt(Msq)
    if (s > m1+m2) && (s < Mtot-m3) && (t > m2+m3) && (t < Mtot-m1) && (cosθsq(s,t,Msq,m1sq,m2sq,m3sq) < 1.)
        val = 1
    end
    return val
end

function h1(p)
    R=5
    RPsq = R^2*p^2
    sqrt(RPsq/(1+RPsq))
end

Plot your matrix element

just fill $\mathfrak{M}(s,t)$ function


In [1]:
# Function for the square of the matrix element
=0.139;
=0.7755; Γρ=0.15; Ma1 = 1.26;

Msq = Ma1^2; m1sq = ^2; m2sq = ^2; m3sq = ^2;

# This is a function fo fill
function Matr(s,t)
    1./(^2-s-1im*Γρ*)
end

# MatrSq just add missing values outside of the Dalitz plot
function MatrSq(s,t,Msq,m1sq,m2sq,m3sq)
    if (border(s,t,) == 0)
        return NaN
    end
    abs(Matr(s,t))^2
end

# Plot
DensityPlot(MatrSq, 0:0.005:1.2, 0:0.005:1.2)


UndefVarError: DensityPlot not defined

In [ ]: