The given Dalitz plot for $D^+\to \pi^+K^-K^+$ from BaBar measurements [PRD 83 (2011) 052001]
One sees two main decay chains:
The matrix element in the isobar model reads $$ \mathfrak{M} = c_3\frac{|\vec{p}_1^*||\vec{p}_3|\cos{\theta_{12}}}{m_\phi^2 - s_3 - i m_{\phi}\Gamma_{\phi}} + c_1\frac{|\vec{p}_2^*||\vec{p}_1|\cos{\theta_{23}}}{m_{K^*}^2 - s_1 - i m_{K^\star}\Gamma_{K^\star}} $$
In [1]:
using PyPlot
using PyCall
@pyimport numpy.ma as ma
# simple flat plot
function Plot(f, x)
fx=[f(xi) for xi in x]
plot(x, fx)
end
# plot of function of 2 variables, 3D plot
function Plot(f, x, y)
fx=[[xi, yi, f(xi,yi)] for xi in x for yi in y]
surf([fxi[1] for fxi in fx], [fxi[2] for fxi in fx], [fxi[3] for fxi in fx])
end
# plot of function of 2 variables, color-codded
function DensityPlot(f, x, y)
xy = [[xi, yi] for xi in x, yi in y]
zv = [f((xy[i,j][1]+xy[i+1,j+1][1])/2.,
(xy[i,j][2]+xy[i+1,j+1][2])/2.) for i in 1:(size(xy,1)-1), j in 1:(size(xy,2)-1)]
zvmask = pycall(ma.array, Any, zv, mask=isnan.(zv))
xv = [xy[i,j][1] for i in 1:size(xy,1), j in 1:size(xy,2)]
yv = [xy[i,j][2] for i in 1:size(xy,1), j in 1:size(xy,2)]
pcolor(xv, yv, zvmask)
end
Out[1]:
In [2]:
# K\"allen function
λ(x,y,z)=x^2+y^2+z^2-2*x*y-2*y*z-2*z*x
# Break-up momentum
psq(x,y,z)=λ(x,y,z)/(4*x);
# scattering angle in the s-channel
cosθsq(s,t,Msq,m1sq,m2sq,m3sq)=(2s*(t-m2sq-m3sq)-(s+m2sq-m1sq)*(Msq-s-m3sq))^2/(λ(s,m1sq,m2sq)*λ(Msq,s,m3sq))
# inverse to previous one
function t(s,cosθ,Msq,m1sq,m2sq,m3sq)
e2 = (s+m2sq-m1sq)/(2*sqrt(s))
e3 = (Msq-s-m3sq)/(2*sqrt(s))
p2 = sqrt(λ(s,m1sq,m2sq)/(4*s))
p3 = sqrt(λ(Msq,s,m3sq)/(4*s))
m2sq+m3sq+2*e2*e3-2*p2*p3*cosθ
end
# border function returns 0 or 1 whether the dacay is forbidden or allowed
function border(s,t,Msq,m1sq,m2sq,m3sq)
val = 0.0
√s =sqrt(s); √t =sqrt(t)
m1 = sqrt(m1sq); m2 = sqrt(m2sq); m3 = sqrt(m3sq)
Mtot = sqrt(Msq)
if (√s > m1+m2) && (√s < Mtot-m3) && (√t > m2+m3) && (√t < Mtot-m1) && (cosθsq(s,t,Msq,m1sq,m2sq,m3sq) < 1.)
val = 1
end
return val
end
function h1(p)
R=5
RPsq = R^2*p^2
sqrt(RPsq/(1+RPsq))
end
Out[2]:
In [4]:
# Function for the square of the matrix element
mπ=0.139; mK=0.498;
mKs=0.892; ΓKs = 0.05;
mϕ = 1.02; Γϕ=0.004
mD = 1.869
m1sq = mK^2; m2sq = mK^2; m3sq = mπ^2;
Msq = mD^2
function h(p)
R=5
RPsq = R^2*p^2
sqrt(RPsq/(1+RPsq))
end
# This is a function fo fill
function Matr(s,t)
mm = 0.
# first resonance
cosθ12=sqrt(cosθsq(s,t,Msq,m1sq,m2sq,m3sq))
p1star = sqrt(psq(s,m1sq,m2sq))
p3 = sqrt(psq(Msq,s,m3sq))
mm += cosθ12*h1(p1star)*h1(p3)/(mϕ^2-s-1im*Γϕ*mϕ)
# second resonance
u = Msq+m1sq+m2sq+m3sq-s-t
cosθ23=sqrt(cosθsq(t,u,Msq,m2sq,m3sq,m1sq))
p2star = sqrt(psq(t,m2sq,m3sq))
p1 = sqrt(psq(Msq,t,m1sq))
mm += 5*cosθ23*h1(p1)*h1(p2star)/(mKs^2-t-1im*ΓKs*mKs)
return mm
end
# MatrSq just add missing values outside of the Dalitz plot
function MatrSq(s,t)
if (border(s,t,Msq,m1sq,m2sq,m3sq) == 0)
return NaN
end
abs(Matr(s,t))^2
end
# Plot
pp = DensityPlot(MatrSq, 0.8:0.01:3.1, 0.3:0.01:2.0)
pp[:axes][:set](title="Dalitz plot for D+->pi+K-K+",
xlabel = "m2(pi+K-) (GeV2)",
ylabel = "m2(K-K+) (GeV2)")
Out[4]:
In [ ]: