In [ ]:
import rmgpy
from rmgpy.rmg.model import CoreEdgeReactionModel
from rmgpy.data.rmg import RMGDatabase
from rmgpy.rmg.react import *
from rmgpy.reaction import Reaction
from rmgpy.molecule.molecule import Molecule
from rmgpy.molecule.resonance import *
from rmgpy.species import Species
from rmgpy.thermo.thermoengine import submit
from rmgpy.kinetics.kineticsdata import KineticsData
from rmgpy.data.kinetics.family import TemplateReaction
from rmgpy.data.kinetics.depository import DepositoryReaction
from rmgpy.kinetics.arrhenius import Arrhenius
from IPython.display import display
In [ ]:
%matplotlib inline
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
In [ ]:
families = ['R_Addition_MultipleBond']
In [ ]:
databasePath = rmgpy.settings['database.directory']
database = RMGDatabase()
database.load(
path = databasePath,
thermoLibraries = ['primaryThermoLibrary', 'C10H11'],
reactionLibraries = [],
seedMechanisms = [],
kineticsFamilies = families,
)
for family in database.kinetics.families.itervalues():
family.addKineticsRulesFromTrainingSet(thermoDatabase=database.thermo)
family.fillKineticsRulesByAveragingUp(verbose=True)
In [ ]:
benz = Species().fromSMILES('c12ccccc1cccc2')
benz.generate_resonance_structures()
arom = benz.molecule[1]
display(arom)
keku = benz.molecule[0]
display(keku)
combos = [
(Species(molecule=[keku]), Species().fromSMILES('[H]')),
(Species(molecule=[arom]), Species().fromSMILES('[H]')),
(Species(molecule=[keku]), Species().fromSMILES('[CH3]')),
(Species(molecule=[arom]), Species().fromSMILES('[CH3]')),
(Species(molecule=[keku]), Species().fromSMILES('[OH]')),
(Species(molecule=[arom]), Species().fromSMILES('[OH]')),
(Species(molecule=[keku]), Species().fromSMILES('[c]1ccccc1')),
(Species(molecule=[arom]), Species().fromSMILES('[c]1ccccc1')),
]
for c in combos:
submit(c[1])
In [ ]:
cerm = CoreEdgeReactionModel()
for reactants in combos:
result = reactSpecies(reactants)
print len(result)
for rxn0 in result:
rxn1 = cerm.makeNewReaction(rxn0, checkExisting=False)
for rxn0 in cerm.newReactionList:
cerm.applyKineticsToReaction(rxn0)
if isinstance(rxn0.kinetics, KineticsData):
rxn0.kinetics = reaction.kinetics.toArrhenius()
if isinstance(rxn0,TemplateReaction) or isinstance(rxn0,DepositoryReaction):
rxn0.fixBarrierHeight()
In [ ]:
for i, rxn0 in enumerate(cerm.newReactionList):
print i
display(rxn0)
print rxn0.template
print rxn0.kinetics
In [ ]:
# Aromatics
selected = [
[8, 12],
# [15, 19],
[22, 26],
]
literature = [
[Arrhenius(A=(2.195e-3,'m^3/(mol*s)'), n=2.88, Ea=(45655.81,'J/mol'), T0=(1,'K'))],
# [Arrhenius(A=(2.29e12,'cm^3/(mol*s)'), n=0, Ea=(0.68,'kcal/mol'), T0=(1,'K'))],
[Arrhenius(A=(9.5499e11,'cm^3/(mol*s)'), n=0, Ea=(4.308,'kcal/mol'), T0=(1,'K'))],
]
labels = [
'Double',
'Aromatic',
'Literature',
]
filename = 'aromatic_bonds.png'
In [ ]:
for rxns in selected:
for rxn in rxns:
rxn0 = cerm.newReactionList[rxn]
display(rxn0)
print rxn0.template
print rxn0.kinetics
In [ ]:
# plt.rcParams['font.sans-serif'] = ['Source Sans Pro']
fs = 16 # font size
pressure = 1e5 # Pa
temperature = np.linspace(298, 2000, 20)
plt.style.use('seaborn-talk')
fig, axarr = plt.subplots(1, 2, figsize=(8,3), squeeze=False)
colormap = mpl.cm.Set1
for i, indices in enumerate(selected):
if i < 3:
ax = axarr[0, i]
else:
ax = axarr[1, i - 3]
for j, index in enumerate(indices + literature[i]):
if isinstance(index, int):
rate = cerm.newReactionList[index].kinetics
else:
rate = index
kunits = rate.A.units
print kunits
# Evaluate kinetics
k = []
for t in temperature:
if 'm^3' in kunits:
k.append(1e6 * rate.getRateCoefficient(t, pressure))
else:
k.append(rate.getRateCoefficient(t, pressure))
x = 1000 / temperature
ax.semilogy(x, k, color=colormap(j))
ax.set_xlabel('1000/T (K)', fontsize=fs)
ax.set_ylabel('k (' + kunits + ')', fontsize=fs)
ax.legend(labels, loc=3)
fig.tight_layout()
plt.savefig(filename, dpi=300)
In [ ]: