In [1]:
%matplotlib inline
Populating the interactive namespace from numpy and matplotlib

In [2]:
import pandas as pd
import numpy as np

In [3]:
%timeit range(1000)


100000 loops, best of 3: 7.38 µs per loop

In [4]:
%%timeit x = range(10000)
max(x)


10000 loops, best of 3: 162 µs per loop

In [5]:
from datetime import datetime

now = datetime.now()
num = 1234567890

print("{:%Y-%m %H:%M:%S} - {:,}".format(now, num))


2015-01 18:24:04 - 1,234,567,890

In [6]:
normals = pd.Series(np.random.normal(size=10))
normals.plot()


Out[6]:
<matplotlib.axes.AxesSubplot at 0x7f686b3d70d0>

In [7]:
data = pd.read_csv("data.csv")

In [8]:
data.head()


Out[8]:
Date Open High Low Close Volume Adj Close
0 2012-06-01 569.16 590.00 548.50 584.00 14077000 581.50
1 2012-05-01 584.90 596.76 522.18 577.73 18827900 575.26
2 2012-04-02 601.83 644.00 555.00 583.98 28759100 581.48
3 2012-03-01 548.17 621.45 516.22 599.55 26486000 596.99
4 2012-02-01 458.41 547.61 453.98 542.44 22001000 540.12

5 rows × 7 columns


In [9]:
data.plot(x="Date", y="High")


Out[9]:
<matplotlib.axes.AxesSubplot at 0x7f686afad690>

In [ ]: