Classify a Raster Using Threshold Values in Python

In this tutorial, we will learn how to:

  1. Read NEON LiDAR Raster Geotifs (eg. CHM, Slope Aspect) into Python numpy arrays with gdal.
  2. Create a classified raster object.

First, let's import the required packages and set our plot display to be in line:


In [1]:
import numpy as np
import gdal
import matplotlib.pyplot as plt
%matplotlib inline
import warnings
warnings.filterwarnings('ignore')

Open a Geotif with GDAL

Let's look at the SERC Canopy Height Model (CHM) to start. We can open and read this in Python using the gdal.Open function:


In [2]:
chm_filename = '../data/SERC/lidar/SERC_CHM.tif'
chm_dataset = gdal.Open(chm_filename)

Read information from Geotif Tags

The Geotif file format comes with associated metadata containing information about the location and coordinate system/projection. Once we have read in the dataset, we can access this information with the following commands:


In [3]:
#Display the dataset dimensions, number of bands, driver, and geotransform 
cols = chm_dataset.RasterXSize; print('# of columns:',cols)
rows = chm_dataset.RasterYSize; print('# of rows:',rows)
print('# of bands:',chm_dataset.RasterCount)
print('driver:',chm_dataset.GetDriver().LongName)


# of columns: 11197
# of rows: 14997
# of bands: 1
driver: GeoTIFF

GetProjection

We can use GetProjection to see information about the coordinate system and EPSG code.


In [4]:
print('projection:',chm_dataset.GetProjection())


projection: PROJCS["WGS 84 / UTM zone 18N",GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]],PROJECTION["Transverse_Mercator"],PARAMETER["latitude_of_origin",0],PARAMETER["central_meridian",-75],PARAMETER["scale_factor",0.9996],PARAMETER["false_easting",500000],PARAMETER["false_northing",0],UNIT["metre",1,AUTHORITY["EPSG","9001"]],AXIS["Easting",EAST],AXIS["Northing",NORTH],AUTHORITY["EPSG","32618"]]

GetGeoTransform

The geotransform contains information about the origin (upper-left corner) of the raster, the pixel size, and the rotation angle of the data. All NEON data in the latest format have zero rotation. In this example, the values correspond to:


In [5]:
print('geotransform:',chm_dataset.GetGeoTransform())


geotransform: (358816.0, 1.0, 0.0, 4313476.0, 0.0, -1.0)

In this case, the geotransform values correspond to:

  1. Top-Left X Coordinate = 358816.0
  2. W-E Pixel Resolution = 1.0
  3. Rotation (0 if Image is North-Up) = 0.0
  4. Top-Left Y Coordinate = 4313476.0
  5. Rotation (0 if Image is North-Up) = 0.0
  6. N-S Pixel Resolution = -1.0

We can convert this information into a spatial extent (xMin, xMax, yMin, yMax) by combining information about the origin, number of columns & rows, and pixel size, as follows:


In [6]:
chm_mapinfo = chm_dataset.GetGeoTransform()
xMin = chm_mapinfo[0]
yMax = chm_mapinfo[3]

xMax = xMin + chm_dataset.RasterXSize/chm_mapinfo[1] #divide by pixel width 
yMin = yMax + chm_dataset.RasterYSize/chm_mapinfo[5] #divide by pixel height (note sign +/-)
chm_ext = (xMin,xMax,yMin,yMax)
print('chm raster extent:',chm_ext)


chm raster extent: (358816.0, 370013.0, 4298479.0, 4313476.0)

GetRasterBand

We can read in a single raster band with GetRasterBand and access information about this raster band such as the No Data Value, Scale Factor, and Statitiscs as follows:


In [7]:
chm_raster = chm_dataset.GetRasterBand(1)
noDataVal = chm_raster.GetNoDataValue(); print('no data value:',noDataVal)
scaleFactor = chm_raster.GetScale(); print('scale factor:',scaleFactor)
chm_stats = chm_raster.GetStatistics(True,True)
print('SERC CHM Statistics: Minimum=%.2f, Maximum=%.2f, Mean=%.3f, StDev=%.3f' % 
      (chm_stats[0], chm_stats[1], chm_stats[2], chm_stats[3]))


no data value: -9999.0
scale factor: 1.0
SERC CHM Statistics: Minimum=0.00, Maximum=48.45, Mean=10.657, StDev=12.538

ReadAsArray

Finally we can convert the raster to an array using the ReadAsArray command. Use the extension astype(np.float) to ensure the array contains floating-point numbers. Once we generate the array, we want to set No Data Values to NaN, and apply the scale factor:


In [8]:
chm_array = chm_dataset.GetRasterBand(1).ReadAsArray(0,0,cols,rows).astype(np.float)
chm_array[chm_array==int(noDataVal)]=np.nan #Assign CHM No Data Values to NaN
chm_array=chm_array/scaleFactor
print('SERC CHM Array:\n',chm_array) #display array values


SERC CHM Array:
 [[ nan  nan  nan ...,  nan  nan  nan]
 [ nan  nan  nan ...,  nan  nan  nan]
 [ nan  nan  nan ...,  nan  nan  nan]
 ..., 
 [ nan  nan  nan ...,  nan  nan  nan]
 [ nan  nan  nan ...,  nan  nan  nan]
 [ nan  nan  nan ...,  nan  nan  nan]]

Array Statistics

To get a better idea of the dataset, print some basic statistics:


In [9]:
# Display statistics (min, max, mean); numpy.nanmin calculates the minimum without the NaN values.
print('SERC CHM Array Statistics:')
print('min:',round(np.nanmin(chm_array),2))
print('max:',round(np.nanmax(chm_array),2))
print('mean:',round(np.nanmean(chm_array),2))

# Calculate the % of pixels that are NaN and non-zero:
pct_nan = np.count_nonzero(np.isnan(chm_array))/(rows*cols)
print('% NaN:',round(pct_nan*100,2))
print('% non-zero:',round(100*np.count_nonzero(chm_array)/(rows*cols),2))


SERC CHM Array Statistics:
min: 0.0
max: 76.58
mean: 10.64
% NaN: 12.16
% non-zero: 54.97

In [10]:
# Plot array
# We can use our plot_band_array function from Day 1
# %load plot_band_array
def plot_band_array(band_array,refl_extent,title,cmap_title,colormap='spectral'):
    plt.imshow(band_array,extent=refl_extent); 
    cbar = plt.colorbar(); plt.set_cmap(colormap); 
    cbar.set_label(cmap_title,rotation=270,labelpad=20)
    plt.title(title); ax = plt.gca(); 
    ax.ticklabel_format(useOffset=False, style='plain') #do not use scientific notation #
    rotatexlabels = plt.setp(ax.get_xticklabels(),rotation=90) #rotate x tick labels 90 degrees

In [11]:
plot_band_array(chm_array,chm_ext,'SERC Canopy Height','Canopy Height, m')


Plot Histogram of Data


In [12]:
import copy
chm_nonan_array = copy.copy(chm_array)
chm_nonan_array = chm_nonan_array[~np.isnan(chm_array)]
plt.hist(chm_nonan_array,weights=np.zeros_like(chm_nonan_array)+1./
         (chm_array.shape[0]*chm_array.shape[1]),bins=50);
plt.title('Distribution of SERC Canopy Height')
plt.xlabel('Tree Height (m)'); plt.ylabel('Relative Frequency')


Out[12]:
<matplotlib.text.Text at 0xb8be550>

We can see that most of the values are zero. In SERC, many of the zero CHM values correspond to bodies of water as well as regions of land without trees. Let's look at a histogram and plot the data without zero values:


In [13]:
chm_nonzero_array = copy.copy(chm_array)
chm_nonzero_array[chm_array==0]=np.nan
chm_nonzero_nonan_array = chm_nonzero_array[~np.isnan(chm_nonzero_array)]
# Use weighting to plot relative frequency
plt.hist(chm_nonzero_nonan_array,weights=np.zeros_like(chm_nonzero_nonan_array)+1./
         (chm_array.shape[0]*chm_array.shape[1]),bins=50);

# plt.hist(chm_nonzero_nonan_array.flatten(),50) 
plt.title('Distribution of SERC Non-Zero Canopy Height')
plt.xlabel('Tree Height (m)'); plt.ylabel('Relative Frequency')
# plt.xlim(0,25); plt.ylim(0,4000000)

print('min:',np.amin(chm_nonzero_nonan_array),'m')
print('max:',round(np.amax(chm_nonzero_nonan_array),2),'m')
print('mean:',round(np.mean(chm_nonzero_nonan_array),2),'m')


min: 2.0 m
max: 76.58 m
mean: 21.84 m

From the histogram we can see that the majority of the trees are < 45m. We can replot the CHM array, this time adjusting the color bar to better visualize the variation in canopy height. We will plot the non-zero array so that CHM=0 appears white.


In [14]:
plt.imshow(chm_array,extent=chm_ext,clim=(0,45))
cbar = plt.colorbar(); plt.set_cmap('BuGn'); 
cbar.set_label('Canopy Height, m',rotation=270,labelpad=20)
plt.title('SERC Non-Zero CHM, <45m'); ax = plt.gca(); 
ax.ticklabel_format(useOffset=False, style='plain') #do not use scientific notation #
rotatexlabels = plt.setp(ax.get_xticklabels(),rotation=90) #rotate x tick labels 90 degrees


Create a raster2array function to automate conversion of Geotif to array:

Now that we have a basic understanding of how GDAL reads in a Geotif file, we can write a function to read in a NEON geotif, convert it to a numpy array, and store the associated metadata in a Python dictionary in order to more efficiently carry out further analysis:


In [15]:
# raster2array.py reads in the first band of geotif file and returns an array and associated 
# metadata dictionary containing ...

from osgeo import gdal
import numpy as np

def raster2array(geotif_file):
    metadata = {}
    dataset = gdal.Open(geotif_file)
    metadata['array_rows'] = dataset.RasterYSize
    metadata['array_cols'] = dataset.RasterXSize
    metadata['bands'] = dataset.RasterCount
    metadata['driver'] = dataset.GetDriver().LongName
    metadata['projection'] = dataset.GetProjection()
    metadata['geotransform'] = dataset.GetGeoTransform()
    
    mapinfo = dataset.GetGeoTransform()
    metadata['pixelWidth'] = mapinfo[1]
    metadata['pixelHeight'] = mapinfo[5]
#     metadata['xMin'] = mapinfo[0]
#     metadata['yMax'] = mapinfo[3]
#     metadata['xMax'] = mapinfo[0] + dataset.RasterXSize/mapinfo[1]
#     metadata['yMin'] = mapinfo[3] + dataset.RasterYSize/mapinfo[5]
    
    metadata['ext_dict'] = {}
    metadata['ext_dict']['xMin'] = mapinfo[0]
    metadata['ext_dict']['xMax'] = mapinfo[0] + dataset.RasterXSize/mapinfo[1]
    metadata['ext_dict']['yMin'] = mapinfo[3] + dataset.RasterYSize/mapinfo[5]
    metadata['ext_dict']['yMax'] = mapinfo[3]
    
    metadata['extent'] = (metadata['ext_dict']['xMin'],metadata['ext_dict']['xMax'],
                          metadata['ext_dict']['yMin'],metadata['ext_dict']['yMax'])
    
    if metadata['bands'] == 1:
        raster = dataset.GetRasterBand(1)
        metadata['noDataValue'] = raster.GetNoDataValue()
        metadata['scaleFactor'] = raster.GetScale()
        
        # band statistics
        metadata['bandstats'] = {} #make a nested dictionary to store band stats in same 
        stats = raster.GetStatistics(True,True)
        metadata['bandstats']['min'] = round(stats[0],2)
        metadata['bandstats']['max'] = round(stats[1],2)
        metadata['bandstats']['mean'] = round(stats[2],2)
        metadata['bandstats']['stdev'] = round(stats[3],2)
        
        array = dataset.GetRasterBand(1).ReadAsArray(0,0,metadata['array_cols'],metadata['array_rows']).astype(np.float)
        array[array==int(metadata['noDataValue'])]=np.nan
        array = array/metadata['scaleFactor']
        return array, metadata
    
    elif metadata['bands'] > 1:
        print('More than one band ... need to modify function for case of multiple bands')

In [17]:
SERC_chm_array, SERC_chm_metadata = raster2array('../data/SERC/lidar/SERC_CHM.tif')

print('SERC CHM Array:\n',SERC_chm_array)
# print(chm_metadata)

#print metadata in alphabetical order
for item in sorted(SERC_chm_metadata):
    print(item + ':', SERC_chm_metadata[item])


SERC CHM Array:
 [[ nan  nan  nan ...,  nan  nan  nan]
 [ nan  nan  nan ...,  nan  nan  nan]
 [ nan  nan  nan ...,  nan  nan  nan]
 ..., 
 [ nan  nan  nan ...,  nan  nan  nan]
 [ nan  nan  nan ...,  nan  nan  nan]
 [ nan  nan  nan ...,  nan  nan  nan]]
array_cols: 11197
array_rows: 14997
bands: 1
bandstats: {'stdev': 12.54, 'mean': 10.66, 'min': 0.0, 'max': 48.45}
driver: GeoTIFF
ext_dict: {'xMin': 358816.0, 'xMax': 370013.0, 'yMax': 4313476.0, 'yMin': 4298479.0}
extent: (358816.0, 370013.0, 4298479.0, 4313476.0)
geotransform: (358816.0, 1.0, 0.0, 4313476.0, 0.0, -1.0)
noDataValue: -9999.0
pixelHeight: -1.0
pixelWidth: 1.0
projection: PROJCS["WGS 84 / UTM zone 18N",GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]],PROJECTION["Transverse_Mercator"],PARAMETER["latitude_of_origin",0],PARAMETER["central_meridian",-75],PARAMETER["scale_factor",0.9996],PARAMETER["false_easting",500000],PARAMETER["false_northing",0],UNIT["metre",1,AUTHORITY["EPSG","9001"]],AXIS["Easting",EAST],AXIS["Northing",NORTH],AUTHORITY["EPSG","32618"]]
scaleFactor: 1.0

Threshold Based Raster Classification

Next, we will create a classified raster object. To do this, we will use the se the numpy.where function to create a new raster based off boolean classifications. Let's classify the canopy height into four groups:

  • Class 1: CHM = 0 m
  • Class 2: 0m < CHM <= 20m
  • Class 3: 20m < CHM <= 40m
  • Class 4: CHM > 40m

In [18]:
chm_reclass = copy.copy(chm_array)
chm_reclass[np.where(chm_array==0)] = 1 # CHM = 0 : Class 1
chm_reclass[np.where((chm_array>0) & (chm_array<=20))] = 2 # 0m < CHM <= 20m - Class 2
chm_reclass[np.where((chm_array>20) & (chm_array<=40))] = 3 # 20m < CHM < 40m - Class 3
chm_reclass[np.where(chm_array>40)] = 4 # CHM > 40m - Class 4

print('Min:',np.nanmin(chm_reclass))
print('Max:',np.nanmax(chm_reclass))
print('Mean:',round(np.nanmean(chm_reclass),2))

import matplotlib.colors as colors
plt.figure(); #ax = plt.subplots()
cmapCHM = colors.ListedColormap(['lightblue','yellow','green','red'])
plt.imshow(chm_reclass,extent=chm_ext,cmap=cmapCHM)
plt.title('SERC CHM Classification')
ax=plt.gca(); ax.ticklabel_format(useOffset=False, style='plain') #do not use scientific notation 
rotatexlabels = plt.setp(ax.get_xticklabels(),rotation=90) #rotate x tick labels 90 degrees
# forceAspect(ax,aspect=1) # ax.set_aspect('auto')

# Create custom legend to label the four canopy height classes:
import matplotlib.patches as mpatches
class1_box = mpatches.Patch(color='lightblue', label='CHM = 0m')
class2_box = mpatches.Patch(color='yellow', label='0m < CHM < 20m')
class3_box = mpatches.Patch(color='green', label='20m < CHM < 40m')
class4_box = mpatches.Patch(color='red', label='CHM > 40m')

ax.legend(handles=[class1_box,class2_box,class3_box,class4_box],
          handlelength=0.7,bbox_to_anchor=(1.05, 0.4),loc='lower left',borderaxespad=0.)


Min: 1.0
Max: 4.0
Mean: 1.79
Out[18]:
<matplotlib.legend.Legend at 0xc1c4d68>

Export classified raster to a geotif


In [19]:
# %load ../hyperspectral_hdf5/array2raster.py
"""
Array to Raster Function from https://pcjericks.github.io/py-gdalogr-cookbook/raster_layers.html)
"""
import gdal, osr #ogr, os, osr
import numpy as np

def array2raster(newRasterfn,rasterOrigin,pixelWidth,pixelHeight,array,epsg):

    cols = array.shape[1]
    rows = array.shape[0]
    originX = rasterOrigin[0]
    originY = rasterOrigin[1]

    driver = gdal.GetDriverByName('GTiff')
    outRaster = driver.Create(newRasterfn, cols, rows, 1, gdal.GDT_Byte)
    outRaster.SetGeoTransform((originX, pixelWidth, 0, originY, 0, pixelHeight))
    outband = outRaster.GetRasterBand(1)
    outband.WriteArray(array)
    outRasterSRS = osr.SpatialReference()
    outRasterSRS.ImportFromEPSG(epsg)
    outRaster.SetProjection(outRasterSRS.ExportToWkt())
    outband.FlushCache()

In [21]:
# array2raster(newRasterfn,rasterOrigin,pixelWidth,pixelHeight,array)
epsg = 32618 #WGS84, UTM Zone 18N
rasterOrigin = (SERC_chm_metadata['ext_dict']['xMin'],SERC_chm_metadata['ext_dict']['yMax'])
print('raster origin:',rasterOrigin)
array2raster('./Outputs/SERC_CHM_Classified.tif',rasterOrigin,1,-1,chm_reclass,epsg)


raster origin: (358816.0, 4313476.0)

Challenge 1: Document Your Workflow

  1. Look at the code that you created for this lesson. Now imagine yourself months in the future. Document your script so that your methods and process is clear and reproducible for yourself or others to follow in the future.
  2. In documenting your script, synthesize the outputs. Do they tell you anything about the vegetation structure at the field site?

Challenge 2: Try out other Classifications

Create the following threshold classified outputs:

  1. A raster where NDVI values are classified into the following categories:
    • Low greenness: NDVI < 0.3
    • Medium greenness: 0.3 < NDVI < 0.6
    • High greenness: NDVI > 0.6
  2. A raster where aspect is classified into North and South facing slopes:

Be sure to document your workflow as you go using Jupyter Markdown cells. When you are finished, explore your outputs to HTML by selecting File > Download As > HTML (.html). Save the file as LastName_Tues_classifyThreshold.html. Add this to the Tuesday directory in your DI17-NEON-participants Git directory and push them to your fork in GitHub. Merge with the central repository using a pull request.

Aspect Raster Classification on TEAK Dataset (California)

Next, we will create a classified raster object based on slope using the TEAK dataset. This time, our classifications will be:

  • North Facing Slopes: 0-45 & 315-360 degrees ; class=1
  • South Facing Slopes: 135-225 degrees ; class=2
  • East & West Facing Slopes: 45-135 & 225-315 degrees ; unclassified

Figure: (Boz et al. 2015)
http://www.aimspress.com/article/10.3934/energy.2015.3.401/fulltext.html

Further Reading: There are a range of applications for aspect classification. The link above shows an example of classifying LiDAR aspect data to determine suitability of roofs for PV (photovoltaic) systems. Can you think of any other applications where aspect classification might be useful?

Data Tip: You can calculate aspect in Python from a digital elevation (or surface) model using the pyDEM package: https://earthlab.github.io/tutorials/get-slope-aspect-from-digital-elevation-model/

Let's get started. First we can import the TEAK aspect raster geotif and convert it to an array using the raster2array function:


In [22]:
TEAK_aspect_tif = '../data/TEAK/lidar/TEAK_lidarAspect.tif'
TEAK_asp_array, TEAK_asp_metadata = raster2array(TEAK_aspect_tif)
print('TEAK Aspect Array:\n',TEAK_asp_array)

#print metadata in alphabetical order
for item in sorted(TEAK_asp_metadata):
    print(item + ':', TEAK_asp_metadata[item])

plot_band_array(TEAK_asp_array,TEAK_asp_metadata['extent'],'TEAK Aspect','Aspect, degrees')


TEAK Aspect Array:
 [[ 250.06430054  257.85830688  262.95651245 ...,  130.26113892
   124.93721008  124.00881958]
 [ 258.81506348  258.72476196  256.93389893 ...,  128.81915283
   122.07086182  125.01222992]
 [ 271.61352539  264.06555176  257.58831787 ...,  131.73789978
   122.91130829  123.45059204]
 ..., 
 [ 102.16982269  116.63002777  118.32381439 ...,  112.23679352
   119.87068939  129.57875061]
 [  98.08813477  106.55480194  107.11672211 ...,  110.36571503
   116.52466583  125.59832764]
 [  94.95069122   94.69854736   89.70905304 ...,  108.84827423
   113.43959808  122.22781372]]
array_cols: 543
array_rows: 577
bands: 1
bandstats: {'stdev': 87.69, 'mean': 139.9, 'min': 0.0, 'max': 359.99}
driver: GeoTIFF
ext_dict: {'xMin': 325963.0, 'xMax': 326506.0, 'yMax': 4103482.0, 'yMin': 4102905.0}
extent: (325963.0, 326506.0, 4102905.0, 4103482.0)
geotransform: (325963.0, 1.0, 0.0, 4103482.0, 0.0, -1.0)
noDataValue: -9999.0
pixelHeight: -1.0
pixelWidth: 1.0
projection: PROJCS["WGS 84 / UTM zone 11N",GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]],PROJECTION["Transverse_Mercator"],PARAMETER["latitude_of_origin",0],PARAMETER["central_meridian",-117],PARAMETER["scale_factor",0.9996],PARAMETER["false_easting",500000],PARAMETER["false_northing",0],UNIT["metre",1,AUTHORITY["EPSG","9001"]],AXIS["Easting",EAST],AXIS["Northing",NORTH],AUTHORITY["EPSG","32611"]]
scaleFactor: 1.0

In [23]:
aspect_array = copy.copy(TEAK_asp_array)
asp_reclass = copy.copy(aspect_array)
asp_reclass[np.where(((aspect_array>=0) & (aspect_array<=45)) | (aspect_array>=315))] = 1 #North - Class 1
asp_reclass[np.where((aspect_array>=135) & (aspect_array<=225))] = 2 #South - Class 2
asp_reclass[np.where(((aspect_array>45) & (aspect_array<135)) | ((aspect_array>225) & (aspect_array<315)))] = np.nan #W & E - Unclassified

print('Min:',np.nanmin(asp_reclass))
print('Max:',np.nanmax(asp_reclass))
print('Mean:',round(np.nanmean(asp_reclass),2))

def forceAspect(ax,aspect=1):
    im = ax.get_images()
    extent =  im[0].get_extent()
    ax.set_aspect(abs((extent[1]-extent[0])/(extent[3]-extent[2]))/aspect)

# plot_band_array(aspect_reclassified,asp_ext,'North and South Facing Slopes \n HOPB')
from matplotlib import colors
fig, ax = plt.subplots()
cmapNS = colors.ListedColormap(['blue','red'])
plt.imshow(asp_reclass,extent=TEAK_asp_metadata['extent'],cmap=cmapNS)
plt.title('HOPB \n N and S Facing Slopes')
ax=plt.gca(); ax.ticklabel_format(useOffset=False, style='plain') #do not use scientific notation 
rotatexlabels = plt.setp(ax.get_xticklabels(),rotation=90) #rotate x tick labels 90 degrees
ax = plt.gca(); forceAspect(ax,aspect=1)

# Create custom legend to label N & S
import matplotlib.patches as mpatches
blue_box = mpatches.Patch(color='blue', label='North')
red_box = mpatches.Patch(color='red', label='South')
ax.legend(handles=[blue_box,red_box],handlelength=0.7,bbox_to_anchor=(1.05, 0.45), 
          loc='lower left', borderaxespad=0.)


Min: 1.0
Max: 2.0
Mean: 1.67
Out[23]:
<matplotlib.legend.Legend at 0xccd7780>

References

Bayrakci Boz, M.; Calvert, K.; Brownson, J.R.S. An automated model for rooftop PV systems assessment in ArcGIS using LIDAR. AIMS Energy 2015, 3, 401–420.

Scratch / Test Code


In [25]:
#SERC Aspect Classification - doesn't work well because there is no significant terrain 
SERC_asp_array, SERC_asp_metadata = raster2array('../data/SERC/lidar/SERC_CHM.tif')
print('SERC Aspect Array:\n',SERC_asp_array)

#print metadata in alphabetical order
for item in sorted(SERC_asp_metadata):
    print(item + ':', SERC_chm_metadata[item])

plot_band_array(SERC_asp_array,SERC_asp_metadata['extent'],'SERC Aspect','Aspect, degrees')

import copy
aspect_array = copy.copy(SERC_asp_array)
asp_reclass = copy.copy(aspect_array)
asp_reclass[np.where(((aspect_array>=0) & (aspect_array<=45)) | (aspect_array>=315))] = 1 #North - Class 1
asp_reclass[np.where((aspect_array>=135) & (aspect_array<=225))] = 2 #South - Class 2
asp_reclass[np.where(((aspect_array>45) & (aspect_array<135)) | ((aspect_array>225) & (aspect_array<315)))] = np.nan #W & E - Unclassified

# print(aspect_reclassified.dtype)
# print('Reclassified Aspect Matrix:',asp_reclass.shape)
# print(aspect_reclassified)
print('Min:',np.nanmin(asp_reclass))
print('Max:',np.nanmax(asp_reclass))
print('Mean:',round(np.nanmean(asp_reclass),2))

# plot_band_array(aspect_reclassified,asp_ext,'North and South Facing Slopes \n HOPB')
from matplotlib import colors
fig, ax = plt.subplots()
cmapNS = colors.ListedColormap(['blue','red'])
plt.imshow(asp_reclass,extent=SERC_asp_metadata['extent'],cmap=cmapNS)
plt.title('SERC \n N and S Facing Slopes')
ax=plt.gca(); ax.ticklabel_format(useOffset=False, style='plain') #do not use scientific notation 
rotatexlabels = plt.setp(ax.get_xticklabels(),rotation=90) #rotate x tick labels 90 degrees

# Create custom legend to label N & S
import matplotlib.patches as mpatches
blue_box = mpatches.Patch(color='blue', label='North')
red_box = mpatches.Patch(color='red', label='South')
ax.legend(handles=[blue_box,red_box],handlelength=0.7,
          bbox_to_anchor=(1.05, 0.45), loc='lower left', borderaxespad=0.)


SERC Aspect Array:
 [[ nan  nan  nan ...,  nan  nan  nan]
 [ nan  nan  nan ...,  nan  nan  nan]
 [ nan  nan  nan ...,  nan  nan  nan]
 ..., 
 [ nan  nan  nan ...,  nan  nan  nan]
 [ nan  nan  nan ...,  nan  nan  nan]
 [ nan  nan  nan ...,  nan  nan  nan]]
array_cols: 11197
array_rows: 14997
bands: 1
bandstats: {'stdev': 12.54, 'mean': 10.66, 'min': 0.0, 'max': 48.45}
driver: GeoTIFF
ext_dict: {'xMin': 358816.0, 'xMax': 370013.0, 'yMax': 4313476.0, 'yMin': 4298479.0}
extent: (358816.0, 370013.0, 4298479.0, 4313476.0)
geotransform: (358816.0, 1.0, 0.0, 4313476.0, 0.0, -1.0)
noDataValue: -9999.0
pixelHeight: -1.0
pixelWidth: 1.0
projection: PROJCS["WGS 84 / UTM zone 18N",GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]],PROJECTION["Transverse_Mercator"],PARAMETER["latitude_of_origin",0],PARAMETER["central_meridian",-75],PARAMETER["scale_factor",0.9996],PARAMETER["false_easting",500000],PARAMETER["false_northing",0],UNIT["metre",1,AUTHORITY["EPSG","9001"]],AXIS["Easting",EAST],AXIS["Northing",NORTH],AUTHORITY["EPSG","32618"]]
scaleFactor: 1.0
Min: 1.0
Max: 1.0
Mean: 1.0
Out[25]:
<matplotlib.legend.Legend at 0xccd7ba8>

In [26]:
#Test out slope reclassification on subset of SERC aspect array:
import copy
aspect_subset = aspect_array[1000:1005,1000:1005]
print(aspect_subset)

asp_sub_reclass = copy.copy(aspect_subset)
asp_sub_reclass[np.where(((aspect_subset>=0) & (aspect_subset<=45)) | (aspect_subset>=315))] = 1 #North - Class 1
asp_sub_reclass[np.where((aspect_subset>=135) & (aspect_subset<=225))] = 2 #South - Class 2
asp_sub_reclass[np.where(((aspect_subset>45) & (aspect_subset<135)) | ((aspect_subset>225) & (aspect_subset<315)))] = np.nan #W & E - Unclassified

print('Reclassified Aspect Subset:\n',asp_sub_reclass)


[[ 22.5         22.79999924  22.18999863  21.07999992  21.51000023]
 [ 21.6099987   21.73999977  17.90999985  19.14999962  16.81999969]
 [ 20.68000031  20.31999969  17.94999886  15.57999992  15.72999954]
 [ 11.63000011  14.34000015  16.64999962  15.47999954  21.81999969]
 [ 12.38999939  14.44999981  15.17999935  19.73999977  21.35000038]]
Reclassified Aspect Subset:
 [[ 1.  1.  1.  1.  1.]
 [ 1.  1.  1.  1.  1.]
 [ 1.  1.  1.  1.  1.]
 [ 1.  1.  1.  1.  1.]
 [ 1.  1.  1.  1.  1.]]

In [27]:
# Another way to read in a Geotif from a gdal workshop:
# http://download.osgeo.org/gdal/workshop/foss4ge2015/workshop_gdal.pdf
ds = gdal.Open(chm_filename)
print('File list:', ds.GetFileList())
print('Width:', ds.RasterXSize)
print('Height:', ds.RasterYSize)
print('Coordinate system:', ds.GetProjection())
gt = ds.GetGeoTransform() # captures origin and pixel size
print('Origin:', (gt[0], gt[3]))
print('Pixel size:', (gt[1], gt[5]))
print('Upper Left Corner:', gdal.ApplyGeoTransform(gt,0,0))
print('Upper Right Corner:', gdal.ApplyGeoTransform(gt,ds.RasterXSize,0))
print('Lower Left Corner:', gdal.ApplyGeoTransform(gt,0,ds.RasterYSize))
print('Lower Right Corner:',gdal.ApplyGeoTransform(gt,ds.RasterXSize,ds.RasterYSize))
print('Center:', gdal.ApplyGeoTransform(gt,ds.RasterXSize/2,ds.RasterYSize/2))
print('Metadata:', ds.GetMetadata())
print('Image Structure Metadata:', ds.GetMetadata('IMAGE_STRUCTURE'))
print('Number of Bands:', ds.RasterCount)
for i in range(1, ds.RasterCount+1):
    band = ds.GetRasterBand(i) # in GDAL, band are indexed starting at 1!
    interp = band.GetColorInterpretation()
    interp_name = gdal.GetColorInterpretationName(interp)
    (w,h)=band.GetBlockSize()
    print('Band %d, block size %dx%d, color interp %s' % (i,w,h,interp_name))
    ovr_count = band.GetOverviewCount()
    for j in range(ovr_count):
        ovr_band = band.GetOverview(j) # but overview bands starting at 0
        print(' Overview %d: %dx%d'%(j, ovr_band.XSize, ovr_band.YSize))


File list: ['../data/SERC/lidar/SERC_CHM.tif', '../data/SERC/lidar/SERC_CHM.tif.aux.xml']
Width: 11197
Height: 14997
Coordinate system: PROJCS["WGS 84 / UTM zone 18N",GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]],PROJECTION["Transverse_Mercator"],PARAMETER["latitude_of_origin",0],PARAMETER["central_meridian",-75],PARAMETER["scale_factor",0.9996],PARAMETER["false_easting",500000],PARAMETER["false_northing",0],UNIT["metre",1,AUTHORITY["EPSG","9001"]],AXIS["Easting",EAST],AXIS["Northing",NORTH],AUTHORITY["EPSG","32618"]]
Origin: (358816.0, 4313476.0)
Pixel size: (1.0, -1.0)
Upper Left Corner: [358816.0, 4313476.0]
Upper Right Corner: [370013.0, 4313476.0]
Lower Left Corner: [358816.0, 4298479.0]
Lower Right Corner: [370013.0, 4298479.0]
Center: [364414.5, 4305977.5]
Metadata: {'AREA_OR_POINT': 'Area'}
Image Structure Metadata: {'INTERLEAVE': 'BAND'}
Number of Bands: 1
Band 1, block size 11197x1, color interp Gray