Linear Regression

Import


In [1]:
import tensorflow as tf


/home/minesh/anaconda3/lib/python3.6/site-packages/h5py/__init__.py:34: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.
  from ._conv import register_converters as _register_converters

Variables init


In [2]:
W = tf.Variable([0.3])
b = tf.Variable([-0.3])
x = tf.placeholder(tf.float32)
linear_model = W * x + b

In [3]:
y = tf.placeholder(tf.float32)

Functions init


In [4]:
squared_deltas = tf.square(linear_model - y)
loss = tf.reduce_sum(squared_deltas)

In [5]:
init = tf.global_variables_initializer()

Optimize


In [6]:
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)

In [7]:
# create a summary for our cost
cost_sum = tf.summary.scalar("cost", loss)
#Weight_sum = tf.summary.scalar("Weight", W)
#bias_sum = tf.summary.scalar("bias", b)
with tf.name_scope('W'):
    mean = tf.reduce_mean(W)
    tf.summary.scalar('mean', mean)
    #stddev = tf.sqrt(tf.reduce_mean(tf.square(W - mean)))
    #tf.summary.scalar('stddev', stddev)
with tf.name_scope('b'):
    mean = tf.reduce_mean(b)
    tf.summary.scalar('mean', mean)
    #stddev = tf.sqrt(tf.reduce_mean(tf.square(W - mean)))
    #tf.summary.scalar('stddev', stddev)

merged = tf.summary.merge_all()

In [8]:
sess = tf.Session()

In [9]:
train_writer = tf.summary.FileWriter('./train',sess.graph)

In [10]:
#tf.InteractiveSession()
#tf.global_variables_initializer().run()
sess.run(init)

In [11]:
sess.run([train],{x:[1,2,3,4],y:[0,-1,-2,-3]})


Out[11]:
[None]

In [12]:
for i in range(500):
    summary, _ = sess.run([merged,train],{x:[1,2,3,4],y:[0,-1,-2,-3]})
    train_writer.add_summary(summary,i)
    if i % 100 ==0 :
        print(sess.run([W,b]))
        print("loss:",sess.run(loss,{x:[1,2,3,4],y:[0,-1,-2,-3]}))


[array([-0.39679998], dtype=float32), array([-0.49552003], dtype=float32)]
loss: 1.8198743
[array([-0.8445884], dtype=float32), array([0.543071], dtype=float32)]
loss: 0.13947809
[array([-0.95341456], dtype=float32), array([0.8630331], dtype=float32)]
loss: 0.012532554
[array([-0.9860358], dtype=float32), array([0.9589436], dtype=float32)]
loss: 0.0011260821
[array([-0.99581414], dtype=float32), array([0.98769313], dtype=float32)]
loss: 0.000101181126

In [ ]:

tensor board


In [13]:
train_writer.close()

In [14]:
#sess.close()

In [15]:
!tensorboard --logdir=./train


/home/minesh/anaconda3/lib/python3.6/site-packages/h5py/__init__.py:34: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.
  from ._conv import register_converters as _register_converters
TensorBoard 1.5.1 at http://Immortal:6006 (Press CTRL+C to quit)
W0403 14:45:58.949438 Thread-1 application.py:273] path /[[_dataImageSrc]] not found, sending 404
^C

In [16]:
!rm -rf ./train

In [ ]: