In [1]:
import tensorflow as tf
In [2]:
W = tf.Variable([0.3])
b = tf.Variable([-0.3])
x = tf.placeholder(tf.float32)
linear_model = W * x + b
In [3]:
y = tf.placeholder(tf.float32)
In [4]:
squared_deltas = tf.square(linear_model - y)
loss = tf.reduce_sum(squared_deltas)
In [5]:
init = tf.global_variables_initializer()
In [6]:
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)
In [7]:
# create a summary for our cost
cost_sum = tf.summary.scalar("cost", loss)
#Weight_sum = tf.summary.scalar("Weight", W)
#bias_sum = tf.summary.scalar("bias", b)
with tf.name_scope('W'):
mean = tf.reduce_mean(W)
tf.summary.scalar('mean', mean)
#stddev = tf.sqrt(tf.reduce_mean(tf.square(W - mean)))
#tf.summary.scalar('stddev', stddev)
with tf.name_scope('b'):
mean = tf.reduce_mean(b)
tf.summary.scalar('mean', mean)
#stddev = tf.sqrt(tf.reduce_mean(tf.square(W - mean)))
#tf.summary.scalar('stddev', stddev)
merged = tf.summary.merge_all()
In [8]:
sess = tf.Session()
In [9]:
train_writer = tf.summary.FileWriter('./train',sess.graph)
In [10]:
#tf.InteractiveSession()
#tf.global_variables_initializer().run()
sess.run(init)
In [11]:
sess.run([train],{x:[1,2,3,4],y:[0,-1,-2,-3]})
Out[11]:
In [12]:
for i in range(500):
summary, _ = sess.run([merged,train],{x:[1,2,3,4],y:[0,-1,-2,-3]})
train_writer.add_summary(summary,i)
if i % 100 ==0 :
print(sess.run([W,b]))
print("loss:",sess.run(loss,{x:[1,2,3,4],y:[0,-1,-2,-3]}))
In [ ]:
In [13]:
train_writer.close()
In [14]:
#sess.close()
In [15]:
!tensorboard --logdir=./train
In [16]:
!rm -rf ./train
In [ ]: