In [1]:
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
np.random.seed(1)
def f(x, a, b):
n = train_X.size
vals = np.zeros((1, n))
for i in range(0, n):
ax = np.multiply(a, x.item(i))
val = np.add(ax, b)
vals[0, i] = val
return vals
Wref = 0.7
bref = -1.
n = 20
noise_var = 0.001
train_X = np.random.random((1, n))
ref_Y = f(train_X, Wref, bref)
train_Y = ref_Y + np.sqrt(noise_var)*np.random.randn(1, n)
n_samples = train_X.size
# Plot
plt.figure(1)
plt.plot(train_X[0, :], ref_Y[0, :], 'ro', label='Original data')
plt.plot(train_X[0, :], train_Y[0, :], 'bo', label='Training data')
plt.axis('equal')
plt.legend(loc='lower right')
Out[1]:
In [2]:
# Parameters
training_epochs = 1000
display_step = 100
# Set TensorFlow Graph
x = tf.placeholder(tf.float32, name="INPUT_x")
y = tf.placeholder(tf.float32, name="OUTPUT_y")
W = tf.Variable(np.random.randn(), name="WEIGHT_W")
b = tf.Variable(np.random.randn(), name="BIAS_b")
# Construct a Model
activation = tf.add(tf.mul(x, W), b)
# Define Error Measure and Optimizer
learning_rate = 0.01
cost = tf.reduce_mean(tf.pow(activation-y, 2))
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) #Gradient descent
# Initializer
init = tf.initialize_all_variables()
# Run!
sess = tf.Session()
# Initialize
sess.run(init)
# Summary
summary_writer = tf.train.SummaryWriter('/tmp/tf_logs/linear_regression', graph=sess.graph)
for epoch in range(training_epochs):
for (_x, _y) in zip(train_X[0, :], train_Y[0, :]):
# print "x: ", x, " y: ", y
sess.run(optimizer, feed_dict={x:_x, y:_y})
# Check cost
if epoch % display_step == 0:
costval = sess.run(cost, feed_dict={x: train_X, y:train_Y})
print("[%d/%d] cost :%.3f" % (epoch, training_epochs, costval)),
Wtemp = sess.run(W)
btemp = sess.run(b)
print("Wtemp is %.3f and Wref is %.3f" % (Wtemp, Wref)),
print("btemp is %.3f and bref is %.3f" % (btemp, bref))
# Final W and b
Wopt = sess.run(W)
bopt = sess.run(b)
fopt = f(train_X, Wopt, bopt)
In [3]:
# Plot Results
plt.figure(2)
plt.plot(train_X[0, :], ref_Y[0, :], 'ro', label='Original data')
plt.plot(train_X[0, :], train_Y[0, :], 'bo', label='Training data')
plt.plot(train_X[0, :], fopt[0, :], 'k-', label='Fitted Line')
plt.axis('equal')
plt.legend(loc='lower right')
Out[3]: