In [ ]:
from planet4 import io
db = io.DBManager()
data = db.get_all()
In [ ]:
from sklearn import preprocessing
In [ ]:
le = preprocessing.LabelEncoder()
In [ ]:
le.fit(data.user_name)
In [ ]:
len(le.classes_)
In [ ]:
data.user_name = le.transform(data.user_name)
In [ ]:
le.transform(data.tail().user_name)
In [ ]:
import pickle
In [ ]:
folder = Path('/Users/klay6683/Dropbox/data/planet4/P4_catalog_v1.0')
fname = folder / 'P4_catalog_v1.0_username_encoder.pkl'
with open(fname, 'wb') as f:
pickle.dump(le, f)
In [ ]:
from planet4 import reduction
In [ ]:
# storing new database
fname = folder / 'P4_catalog_v1.0_raw_classifications.hdf'
data.to_hdf(fname, 'df', format='t', data_columns=reduction.data_columns)
In [ ]:
with open('name_encoder.pkl', 'rb') as f:
le = pickle.load(f)
In [ ]:
le = pickle.load
In [ ]:
le.inverse_transform(np.array([15, 15, 49, 16, 53]))
In [ ]:
np.argwhere(le.classes_=='Vincep1')
In [ ]: