In [ ]:
from planet4 import plotting, catalog_production

In [ ]:
rm = catalog_production.ReleaseManager('v1.0b4')

In [ ]:
fans = rm.read_fan_file()
blotches = rm.read_blotch_file()

In [ ]:
cols = ['angle', 'distance', 'tile_id', 'marking_id',
       'obsid', 'spread', 
       'l_s', 'map_scale', 'north_azimuth',
       'PlanetographicLatitude',
       'PositiveEast360Longitude']

In [ ]:
fans.head()

In [ ]:
fans[cols].rename(dict(PlanetographicLatitude='Latitude',
                       PositiveEast360Longitude='Longitude'),
                  axis=1).head()

In [ ]:
fans.columns

In [ ]:
fan_counts = fans.groupby('tile_id').size()
blotch_counts = blotches.groupby('tile_id').size()

In [ ]:
ids = fan_counts[fan_counts > 4][fan_counts < 10].index

In [ ]:
pure_fans = list(set(ids) - set(blotches.tile_id))

In [ ]:
len(ids)

In [ ]:
len(pure_fans)

In [ ]:
rm.savefolder

In [ ]:
%matplotlib ipympl

In [ ]:
plt.close('all')

In [ ]:
from ipywidgets import interact

In [ ]:
id_ = pure_fans[51]

In [ ]:
def do_plot(i):
    id_ = pure_fans[i]
    plotting.plot_image_id_pipeline(id_, datapath=rm.savefolder, via_obsid=False,
                                    save=True, figsize=(8,4),
                                    saveroot='/Users/klay6683/Dropbox/src/p4_paper1/figures')

In [ ]:
interact(do_plot, i=48)

In [ ]:
from planet4 import markings

In [ ]:
def do_plot(i=0):
    plt.close('all')
    fig, ax = plt.subplots()
    markings.ImageID(pure_fans[i]).show_subframe(ax=ax)
    ax.set_title(pure_fans[i])

In [ ]:
interact(do_plot, i=(0,len(pure_fans),1))

In [ ]:
markings.ImageID('6n3').image_name

In [ ]:
from planet4 import markings

In [ ]:
markings.ImageID(pure_fans[15]).image_name

In [ ]:
plotting.plot_raw_fans(id_)

In [ ]:
plotting.plot_finals(id_, datapath=rm.savefolder)

largest number of fans and blotches


In [ ]:
g_id = fans.groupby('tile_id')

In [ ]:
g_id.size().sort_values(ascending=False).head()

In [ ]:
blotches.groupby('tile_id').size().sort_values(ascending=False).head()

In [ ]:
plotting.plot_finals('6mr', datapath=rm.savefolder)

In [ ]:
plotting.plot_finals('7t9', datapath=rm.savefolder)

parameter_scan


In [ ]:
from planet4 import dbscan

In [ ]:
db = dbscan.DBScanner()

In [ ]:
import seaborn as sns
sns.set_context('paper')

In [ ]:
db.parameter_scan(id_, 'fan', [0.13, 0.2], [10, 20, 30], size_to_scan='small')

pipeline examples


In [ ]:
plotting.plot_image_id_pipeline('bk7', datapath=rm.savefolder, via_obsid=False,
                                    save=True, figsize=(8,4), do_title=False,
                                    saveroot='/Users/klay6683/Dropbox/src/p4_paper1/figures')

In [ ]:
plotting.plot_image_id_pipeline('ops', datapath=rm.savefolder, via_obsid=False,
                                    save=True, figsize=(8,4), do_title=False,
                                    saveroot='/Users/klay6683/Dropbox/src/p4_paper1/figures')

In [ ]:
plotting.plot_image_id_pipeline('b0t', datapath=rm.savefolder, via_obsid=False,
                                    save=True, figsize=(8,4), do_title=False,
                                    saveroot='/Users/klay6683/Dropbox/src/p4_paper1/figures')

ROIs map


In [ ]:
from astropy.table import Table
tab = Table.read('/Users/klay6683/Dropbox/src/p4_paper1/rois_table.tex')

In [ ]:
rois = tab.to_pandas()

In [ ]:
rois.drop(0, inplace=True)

In [ ]:
rois.head()

In [ ]:
rois.columns = ['Latitude', 'Longitude', 'Informal Name', '# Images (MY29)', '# Images (MY30)']

In [ ]:
rois.head()

In [ ]:
rois.to_csv('/Users/klay6683/Dropbox/data/planet4/p4_analysis/rois.csv')

In [ ]: