In [1]:
import sys, os
import glob as glob
import pandas as pd

from metatlas import integrity_monitor as monitor
from metatlas import metatlas_objects as metob
name formula neutralmass m+H M-H+
ABMBA-QC C8H8BrNO2 228.9738 229.9811 227.9666
ACA-QC C15H10O2 222.0681 223.0754 221.0608
d5-benzoic acid C7HD5O2 127.0682 128.0754 126.0609
DMP C5H6N2O2 126.0429 127.0502 125.0357
13C-15N-L-phenylalanine [!13C]9H11[!15N]O2 175.1062 176.1135 174.0989
d4 lysine C6H10D4N2O2 150.1306 151.1379 149.1234
DUBA C10H12N2O3 208.0848 209.0921 207.0775

In [2]:
# %system python /global/homes/b/bpb/repos/metatlas/metatlas/integrity_monitor.py  "/global/project/projectdirs/metatlas/raw_data/"

In [3]:
files = metob.retrieve('Lcmsruns',experiment='20170616_KBL_C18Lip_MW_Spore_FRedo',username='*')

You have to provide the positive and negative istd m/z for this to run

std is the positive m/z

std_neg is the negative m/z


In [4]:
results = []
for f in files:
    r = monitor.data_verify(f,std_neg=120.151,std=550.6298)
    results.append(r)

In [5]:
df = pd.DataFrame(results)

In [6]:
df.to_csv('/global/homes/b/bpb/Downloads/custom_istd_report.csv')

In [ ]: