In [1]:
%matplotlib inline
from __future__ import print_function
import os
import pandas as pd
import numpy as np
from matplotlib import pylab as plt
# global settings for plots
plt.rcParams.update({
'axes.labelsize': 'large',
'axes.labelweight': 'bold',
'axes.titlesize': 'large',
'axes.titleweight': 'bold',
'legend.fontsize': 'small',
'xtick.labelsize': 'large',
'ytick.labelsize': 'large',
})
In [2]:
Varma1994_Fig6 = pd.read_csv('Varma1994_Fig6.csv', sep='\t')
Varma1994_Fig6.head()
Out[2]:
In [3]:
Varma1994_Fig7 = pd.read_csv('Varma1994_Fig7.csv', sep='\t')
Varma1994_Fig7.head()
Out[3]:
In [4]:
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2, figsize=(10,10))
fig.subplots_adjust(hspace=0.3, wspace=0.3)
substances = ['oxygen', 'glucose', 'acetate']
markers = dict(zip(substances, ['o', '^', 's']))
for name in ['oxygen', 'glucose', 'acetate']:
inds = Varma1994_Fig6.substance == name
# ax1.scatter(Varma1994_Fig6.D[inds], Varma1994_Fig6.v[inds])
ax4.scatter(Varma1994_Fig6.D[inds], Varma1994_Fig6.v[inds], marker=markers[name], color='black', label=name)
ax4.set_title("Varma1994 Fig6")
ax4.set_xlabel('D [1/hr]')
ax4.set_ylabel('Uptake & Secretion rates [mmole/g DW-hr]')
ax4.legend()
inds = Varma1994_Fig7.substance == 'cell_density'
ax1.set_title("Varma1994 Fig7")
ax1.scatter(Varma1994_Fig7.time[inds], Varma1994_Fig7.value[inds], color='black')
ax1.set_xlabel('Time [h]')
ax1.set_ylabel('X [g/l]')
inds = Varma1994_Fig7.substance == 'glucose'
ax2.set_title("Varma1994 Fig7")
ax2.scatter(Varma1994_Fig7.time[inds], Varma1994_Fig7.value[inds], color='black')
ax2.set_xlabel('Time [h]')
ax2.set_ylabel('Glucose [mM]')
inds = Varma1994_Fig7.substance == 'acetate'
ax3.set_title("Varma1994 Fig7")
ax3.scatter(Varma1994_Fig7.time[inds], Varma1994_Fig7.value[inds], color='black')
ax3.set_xlabel('Time [h]')
ax3.set_ylabel('Acetate [mM]')
plt.show()
In [ ]: