This is an example of how to use pyLDAvis
helper functions to visualize a GraphLab Create Topic Model model. For our example model we will be extending the example provided by GraphLab's own documenation.
In [2]:
import graphlab as gl
import pyLDAvis
import pyLDAvis.graphlab
In [3]:
# turn on automatic rendering of visualizations
pyLDAvis.enable_notebook()
In [4]:
docs = gl.SArray('http://s3.amazonaws.com/GraphLab-Datasets/nytimes')
PROGRESS: Downloading http://s3.amazonaws.com/GraphLab-Datasets/nytimes/dir_archive.ini to /var/tmp/graphlab-bmabey/7868/000000.ini
PROGRESS: Downloading http://s3.amazonaws.com/GraphLab-Datasets/nytimes/objects.bin to /var/tmp/graphlab-bmabey/7868/000001.bin
PROGRESS: Downloading http://s3.amazonaws.com/GraphLab-Datasets/nytimes/m_2ae8944a.sidx to /var/tmp/graphlab-bmabey/7868/000002.sidx
PROGRESS: Downloading http://s3.amazonaws.com/GraphLab-Datasets/nytimes/m_2ae8944a.0000 to /var/tmp/graphlab-bmabey/7868/000003.0000
PROGRESS: Downloading http://s3.amazonaws.com/GraphLab-Datasets/nytimes/m_2ae8944a.0001 to /var/tmp/graphlab-bmabey/7868/000004.0001
PROGRESS: Downloading http://s3.amazonaws.com/GraphLab-Datasets/nytimes/m_2ae8944a.0002 to /var/tmp/graphlab-bmabey/7868/000005.0002
PROGRESS: Downloading http://s3.amazonaws.com/GraphLab-Datasets/nytimes/m_2ae8944a.0003 to /var/tmp/graphlab-bmabey/7868/000006.0003
PROGRESS: Downloading http://s3.amazonaws.com/GraphLab-Datasets/nytimes/m_2ae8944a.0004 to /var/tmp/graphlab-bmabey/7868/000007.0004
PROGRESS: Downloading http://s3.amazonaws.com/GraphLab-Datasets/nytimes/m_2ae8944a.0005 to /var/tmp/graphlab-bmabey/7868/000008.0005
PROGRESS: Downloading http://s3.amazonaws.com/GraphLab-Datasets/nytimes/m_2ae8944a.0006 to /var/tmp/graphlab-bmabey/7868/000009.0006
PROGRESS: Downloading http://s3.amazonaws.com/GraphLab-Datasets/nytimes/m_2ae8944a.0007 to /var/tmp/graphlab-bmabey/7868/000010.0007
In [7]:
gl.topic_model.create?
In [8]:
%%time
topic_model = gl.topic_model.create(docs, num_topics=15, num_iterations=3000)
PROGRESS: Learning a topic model
PROGRESS: Number of documents 10000
PROGRESS: Vocabulary size 63958
PROGRESS: Running collapsed Gibbs sampling
PROGRESS: +-----------+---------------+----------------+-----------------+
PROGRESS: | Iteration | Elapsed Time | Tokens/Second | Est. Perplexity |
PROGRESS: +-----------+---------------+----------------+-----------------+
PROGRESS: | 10 | 4.30s | 5.59845e+06 | 0 |
PROGRESS: | 20 | 8.08s | 5.65802e+06 | 0 |
PROGRESS: | 30 | 11.87s | 5.9078e+06 | 0 |
PROGRESS: | 40 | 15.64s | 5.53945e+06 | 0 |
PROGRESS: | 50 | 19.58s | 5.64386e+06 | 0 |
PROGRESS: | 60 | 23.63s | 5.14035e+06 | 0 |
PROGRESS: | 70 | 28.19s | 5.19469e+06 | 0 |
PROGRESS: | 80 | 32.55s | 5.06062e+06 | 0 |
PROGRESS: | 90 | 36.71s | 5.24635e+06 | 0 |
PROGRESS: | 100 | 40.63s | 5.46609e+06 | 0 |
PROGRESS: | 110 | 44.58s | 5.60969e+06 | 0 |
PROGRESS: | 120 | 48.73s | 5.43378e+06 | 0 |
PROGRESS: | 130 | 52.86s | 5.11243e+06 | 0 |
PROGRESS: | 140 | 56.85s | 5.36708e+06 | 0 |
PROGRESS: | 150 | 1m 0s | 5.31207e+06 | 0 |
PROGRESS: | 160 | 1m 4s | 5.35679e+06 | 0 |
PROGRESS: | 170 | 1m 8s | 5.53531e+06 | 0 |
PROGRESS: | 180 | 1m 12s | 5.4313e+06 | 0 |
PROGRESS: | 190 | 1m 17s | 5.3068e+06 | 0 |
PROGRESS: | 200 | 1m 21s | 5.49324e+06 | 0 |
PROGRESS: | 210 | 1m 24s | 5.59991e+06 | 0 |
PROGRESS: | 220 | 1m 28s | 5.69224e+06 | 0 |
PROGRESS: | 230 | 1m 32s | 5.70256e+06 | 0 |
PROGRESS: | 240 | 1m 37s | 5.22822e+06 | 0 |
PROGRESS: | 250 | 1m 41s | 4.66881e+06 | 0 |
PROGRESS: | 260 | 1m 45s | 4.56584e+06 | 0 |
PROGRESS: | 270 | 1m 50s | 4.50357e+06 | 0 |
PROGRESS: | 280 | 1m 54s | 4.98652e+06 | 0 |
PROGRESS: | 290 | 1m 59s | 5.18934e+06 | 0 |
PROGRESS: | 300 | 2m 3s | 5.23964e+06 | 0 |
PROGRESS: | 310 | 2m 7s | 4.88573e+06 | 0 |
PROGRESS: | 320 | 2m 12s | 4.80853e+06 | 0 |
PROGRESS: | 330 | 2m 16s | 5.13996e+06 | 0 |
PROGRESS: | 340 | 2m 21s | 4.96993e+06 | 0 |
PROGRESS: | 350 | 2m 25s | 5.1258e+06 | 0 |
PROGRESS: | 360 | 2m 30s | 5.34332e+06 | 0 |
PROGRESS: | 370 | 2m 34s | 5.16732e+06 | 0 |
PROGRESS: | 380 | 2m 38s | 5.08862e+06 | 0 |
PROGRESS: | 390 | 2m 42s | 5.54525e+06 | 0 |
PROGRESS: | 400 | 2m 46s | 5.13597e+06 | 0 |
PROGRESS: | 410 | 2m 51s | 5.42203e+06 | 0 |
PROGRESS: | 420 | 2m 55s | 5.41349e+06 | 0 |
PROGRESS: | 430 | 2m 59s | 5.02961e+06 | 0 |
PROGRESS: | 440 | 3m 3s | 5.35264e+06 | 0 |
PROGRESS: | 450 | 3m 7s | 5.44598e+06 | 0 |
PROGRESS: | 460 | 3m 11s | 5.83597e+06 | 0 |
PROGRESS: | 470 | 3m 16s | 5.19771e+06 | 0 |
PROGRESS: | 480 | 3m 20s | 5.42732e+06 | 0 |
PROGRESS: | 490 | 3m 24s | 5.25899e+06 | 0 |
PROGRESS: | 500 | 3m 28s | 4.22521e+06 | 0 |
PROGRESS: | 510 | 3m 33s | 4.81078e+06 | 0 |
PROGRESS: | 520 | 3m 37s | 5.23807e+06 | 0 |
PROGRESS: | 530 | 3m 42s | 4.83344e+06 | 0 |
PROGRESS: | 540 | 3m 46s | 4.88105e+06 | 0 |
PROGRESS: | 550 | 3m 51s | 4.96088e+06 | 0 |
PROGRESS: | 560 | 3m 55s | 5.23742e+06 | 0 |
PROGRESS: | 570 | 3m 59s | 5.14391e+06 | 0 |
PROGRESS: | 580 | 4m 4s | 4.73677e+06 | 0 |
PROGRESS: | 590 | 4m 8s | 4.7446e+06 | 0 |
PROGRESS: | 600 | 4m 13s | 4.81935e+06 | 0 |
PROGRESS: | 610 | 4m 17s | 5.14317e+06 | 0 |
PROGRESS: | 620 | 4m 22s | 3.98405e+06 | 0 |
PROGRESS: | 630 | 4m 27s | 4.48074e+06 | 0 |
PROGRESS: | 640 | 4m 31s | 5.21034e+06 | 0 |
PROGRESS: | 650 | 4m 35s | 5.18135e+06 | 0 |
PROGRESS: | 660 | 4m 40s | 4.87386e+06 | 0 |
PROGRESS: | 670 | 4m 44s | 5.23199e+06 | 0 |
PROGRESS: | 680 | 4m 48s | 4.62264e+06 | 0 |
PROGRESS: | 690 | 4m 53s | 5.24695e+06 | 0 |
PROGRESS: | 700 | 4m 57s | 5.42099e+06 | 0 |
PROGRESS: | 710 | 5m 1s | 5.27416e+06 | 0 |
PROGRESS: | 720 | 5m 5s | 4.97378e+06 | 0 |
PROGRESS: | 730 | 5m 10s | 5.11693e+06 | 0 |
PROGRESS: | 740 | 5m 14s | 5.25399e+06 | 0 |
PROGRESS: | 750 | 5m 18s | 4.75152e+06 | 0 |
PROGRESS: | 760 | 5m 23s | 4.74399e+06 | 0 |
PROGRESS: | 770 | 5m 27s | 5.30147e+06 | 0 |
PROGRESS: | 780 | 5m 31s | 4.95419e+06 | 0 |
PROGRESS: | 790 | 5m 36s | 4.75985e+06 | 0 |
PROGRESS: | 800 | 5m 40s | 5.0079e+06 | 0 |
PROGRESS: | 810 | 5m 45s | 5.07237e+06 | 0 |
PROGRESS: | 820 | 5m 49s | 4.85123e+06 | 0 |
PROGRESS: | 830 | 5m 53s | 5.23005e+06 | 0 |
PROGRESS: | 840 | 5m 58s | 4.84427e+06 | 0 |
PROGRESS: | 850 | 6m 2s | 4.99574e+06 | 0 |
PROGRESS: | 860 | 6m 7s | 5.06177e+06 | 0 |
PROGRESS: | 870 | 6m 11s | 5.25326e+06 | 0 |
PROGRESS: | 880 | 6m 15s | 5.12843e+06 | 0 |
PROGRESS: | 890 | 6m 20s | 4.95561e+06 | 0 |
PROGRESS: | 900 | 6m 24s | 4.81062e+06 | 0 |
PROGRESS: | 910 | 6m 28s | 4.89783e+06 | 0 |
PROGRESS: | 920 | 6m 32s | 5.3197e+06 | 0 |
PROGRESS: | 930 | 6m 37s | 5.14227e+06 | 0 |
PROGRESS: | 940 | 6m 41s | 5.04436e+06 | 0 |
PROGRESS: | 950 | 6m 46s | 5.02783e+06 | 0 |
PROGRESS: | 960 | 6m 50s | 4.93528e+06 | 0 |
PROGRESS: | 970 | 6m 55s | 4.24361e+06 | 0 |
PROGRESS: | 980 | 6m 59s | 4.69206e+06 | 0 |
PROGRESS: | 990 | 7m 4s | 4.52958e+06 | 0 |
PROGRESS: | 1000 | 7m 8s | 5.11498e+06 | 0 |
PROGRESS: | 1010 | 7m 12s | 5.03511e+06 | 0 |
PROGRESS: | 1020 | 7m 16s | 5.24804e+06 | 0 |
PROGRESS: | 1030 | 7m 21s | 5.22683e+06 | 0 |
PROGRESS: | 1040 | 7m 25s | 4.8709e+06 | 0 |
PROGRESS: | 1050 | 7m 29s | 4.97393e+06 | 0 |
PROGRESS: | 1060 | 7m 34s | 5.02255e+06 | 0 |
PROGRESS: | 1070 | 7m 38s | 5.25404e+06 | 0 |
PROGRESS: | 1080 | 7m 43s | 4.90541e+06 | 0 |
PROGRESS: | 1090 | 7m 47s | 5.21804e+06 | 0 |
PROGRESS: | 1100 | 7m 51s | 5.13437e+06 | 0 |
PROGRESS: | 1110 | 7m 56s | 5.23265e+06 | 0 |
PROGRESS: | 1120 | 8m 0s | 5.21102e+06 | 0 |
PROGRESS: | 1130 | 8m 4s | 4.7302e+06 | 0 |
PROGRESS: | 1140 | 8m 8s | 5.07703e+06 | 0 |
PROGRESS: | 1150 | 8m 13s | 5.17569e+06 | 0 |
PROGRESS: | 1160 | 8m 17s | 5.30585e+06 | 0 |
PROGRESS: | 1170 | 8m 21s | 5.08952e+06 | 0 |
PROGRESS: | 1180 | 8m 25s | 5.0374e+06 | 0 |
PROGRESS: | 1190 | 8m 30s | 5.25056e+06 | 0 |
PROGRESS: | 1200 | 8m 34s | 4.64185e+06 | 0 |
PROGRESS: | 1210 | 8m 38s | 5.42466e+06 | 0 |
PROGRESS: | 1220 | 8m 42s | 5.04005e+06 | 0 |
PROGRESS: | 1230 | 8m 47s | 4.65573e+06 | 0 |
PROGRESS: | 1240 | 8m 51s | 4.9266e+06 | 0 |
PROGRESS: | 1250 | 8m 55s | 5.25832e+06 | 0 |
PROGRESS: | 1260 | 8m 59s | 4.87296e+06 | 0 |
PROGRESS: | 1270 | 9m 4s | 5.54099e+06 | 0 |
PROGRESS: | 1280 | 9m 8s | 5.40511e+06 | 0 |
PROGRESS: | 1290 | 9m 12s | 5.4751e+06 | 0 |
PROGRESS: | 1300 | 9m 16s | 5.35094e+06 | 0 |
PROGRESS: | 1310 | 9m 20s | 5.34549e+06 | 0 |
PROGRESS: | 1320 | 9m 25s | 4.80484e+06 | 0 |
PROGRESS: | 1330 | 9m 29s | 4.66212e+06 | 0 |
PROGRESS: | 1340 | 9m 33s | 5.32365e+06 | 0 |
PROGRESS: | 1350 | 9m 38s | 5.31993e+06 | 0 |
PROGRESS: | 1360 | 9m 42s | 5.32912e+06 | 0 |
PROGRESS: | 1370 | 9m 46s | 5.08139e+06 | 0 |
PROGRESS: | 1380 | 9m 50s | 5.21139e+06 | 0 |
PROGRESS: | 1390 | 9m 55s | 4.99703e+06 | 0 |
PROGRESS: | 1400 | 9m 59s | 4.991e+06 | 0 |
PROGRESS: | 1410 | 10m 3s | 5.08148e+06 | 0 |
PROGRESS: | 1420 | 10m 7s | 5.13859e+06 | 0 |
PROGRESS: | 1430 | 10m 12s | 5.08677e+06 | 0 |
PROGRESS: | 1440 | 10m 16s | 4.7161e+06 | 0 |
PROGRESS: | 1450 | 10m 20s | 5.40952e+06 | 0 |
PROGRESS: | 1460 | 10m 25s | 5.05909e+06 | 0 |
PROGRESS: | 1470 | 10m 29s | 5.00158e+06 | 0 |
PROGRESS: | 1480 | 10m 33s | 5.07173e+06 | 0 |
PROGRESS: | 1490 | 10m 37s | 5.39908e+06 | 0 |
PROGRESS: | 1500 | 10m 41s | 5.20519e+06 | 0 |
PROGRESS: | 1510 | 10m 46s | 5.39554e+06 | 0 |
PROGRESS: | 1520 | 10m 50s | 5.40323e+06 | 0 |
PROGRESS: | 1530 | 10m 54s | 5.18759e+06 | 0 |
PROGRESS: | 1540 | 10m 58s | 5.21281e+06 | 0 |
PROGRESS: | 1550 | 11m 2s | 5.31349e+06 | 0 |
PROGRESS: | 1560 | 11m 6s | 5.31172e+06 | 0 |
PROGRESS: | 1570 | 11m 11s | 5.11091e+06 | 0 |
PROGRESS: | 1580 | 11m 15s | 5.05909e+06 | 0 |
PROGRESS: | 1590 | 11m 19s | 4.94512e+06 | 0 |
PROGRESS: | 1600 | 11m 23s | 4.93809e+06 | 0 |
PROGRESS: | 1610 | 11m 27s | 5.59195e+06 | 0 |
PROGRESS: | 1620 | 11m 31s | 5.56521e+06 | 0 |
PROGRESS: | 1630 | 11m 35s | 5.43631e+06 | 0 |
PROGRESS: | 1640 | 11m 40s | 4.90119e+06 | 0 |
PROGRESS: | 1650 | 11m 44s | 5.43916e+06 | 0 |
PROGRESS: | 1660 | 11m 48s | 5.1769e+06 | 0 |
PROGRESS: | 1670 | 11m 52s | 5.25893e+06 | 0 |
PROGRESS: | 1680 | 11m 56s | 5.2838e+06 | 0 |
PROGRESS: | 1690 | 12m 0s | 5.51797e+06 | 0 |
PROGRESS: | 1700 | 12m 5s | 4.9903e+06 | 0 |
PROGRESS: | 1710 | 12m 9s | 4.8294e+06 | 0 |
PROGRESS: | 1720 | 12m 13s | 5.12015e+06 | 0 |
PROGRESS: | 1730 | 12m 17s | 5.38809e+06 | 0 |
PROGRESS: | 1740 | 12m 21s | 5.30651e+06 | 0 |
PROGRESS: | 1750 | 12m 26s | 5.39673e+06 | 0 |
PROGRESS: | 1760 | 12m 30s | 5.36165e+06 | 0 |
PROGRESS: | 1770 | 12m 34s | 5.34118e+06 | 0 |
PROGRESS: | 1780 | 12m 38s | 5.22067e+06 | 0 |
PROGRESS: | 1790 | 12m 42s | 5.42174e+06 | 0 |
PROGRESS: | 1800 | 12m 46s | 5.20593e+06 | 0 |
PROGRESS: | 1810 | 12m 50s | 5.28709e+06 | 0 |
PROGRESS: | 1820 | 12m 55s | 5.58678e+06 | 0 |
PROGRESS: | 1830 | 12m 59s | 5.00077e+06 | 0 |
PROGRESS: | 1840 | 13m 3s | 5.2627e+06 | 0 |
PROGRESS: | 1850 | 13m 7s | 5.50355e+06 | 0 |
PROGRESS: | 1860 | 13m 11s | 5.43598e+06 | 0 |
PROGRESS: | 1870 | 13m 15s | 5.11404e+06 | 0 |
PROGRESS: | 1880 | 13m 19s | 5.261e+06 | 0 |
PROGRESS: | 1890 | 13m 24s | 5.08025e+06 | 0 |
PROGRESS: | 1900 | 13m 28s | 5.01006e+06 | 0 |
PROGRESS: | 1910 | 13m 32s | 5.15994e+06 | 0 |
PROGRESS: | 1920 | 13m 37s | 5.16736e+06 | 0 |
PROGRESS: | 1930 | 13m 41s | 5.1345e+06 | 0 |
PROGRESS: | 1940 | 13m 45s | 5.09099e+06 | 0 |
PROGRESS: | 1950 | 13m 50s | 4.99722e+06 | 0 |
PROGRESS: | 1960 | 13m 54s | 4.81856e+06 | 0 |
PROGRESS: | 1970 | 13m 58s | 4.99156e+06 | 0 |
PROGRESS: | 1980 | 14m 3s | 4.68172e+06 | 0 |
PROGRESS: | 1990 | 14m 7s | 4.84688e+06 | 0 |
PROGRESS: | 2000 | 14m 12s | 4.76679e+06 | 0 |
PROGRESS: | 2010 | 14m 17s | 4.54456e+06 | 0 |
PROGRESS: | 2020 | 14m 22s | 3.69908e+06 | 0 |
PROGRESS: | 2030 | 14m 27s | 4.56501e+06 | 0 |
PROGRESS: | 2040 | 14m 32s | 4.56358e+06 | 0 |
PROGRESS: | 2050 | 14m 36s | 4.49848e+06 | 0 |
PROGRESS: | 2060 | 14m 41s | 4.54544e+06 | 0 |
PROGRESS: | 2070 | 14m 46s | 4.74351e+06 | 0 |
PROGRESS: | 2080 | 14m 50s | 4.65406e+06 | 0 |
PROGRESS: | 2090 | 14m 55s | 4.85266e+06 | 0 |
PROGRESS: | 2100 | 14m 59s | 4.73347e+06 | 0 |
PROGRESS: | 2110 | 15m 4s | 4.30323e+06 | 0 |
PROGRESS: | 2120 | 15m 9s | 4.59272e+06 | 0 |
PROGRESS: | 2130 | 15m 13s | 4.8619e+06 | 0 |
PROGRESS: | 2140 | 15m 18s | 4.56132e+06 | 0 |
PROGRESS: | 2150 | 15m 23s | 4.59589e+06 | 0 |
PROGRESS: | 2160 | 15m 27s | 4.76242e+06 | 0 |
PROGRESS: | 2170 | 15m 32s | 4.04776e+06 | 0 |
PROGRESS: | 2180 | 15m 38s | 4.28786e+06 | 0 |
PROGRESS: | 2190 | 15m 43s | 4.20092e+06 | 0 |
PROGRESS: | 2200 | 15m 47s | 4.73318e+06 | 0 |
PROGRESS: | 2210 | 15m 52s | 4.75373e+06 | 0 |
PROGRESS: | 2220 | 15m 57s | 4.32632e+06 | 0 |
PROGRESS: | 2230 | 16m 2s | 4.79865e+06 | 0 |
PROGRESS: | 2240 | 16m 6s | 4.74353e+06 | 0 |
PROGRESS: | 2250 | 16m 11s | 4.52114e+06 | 0 |
PROGRESS: | 2260 | 16m 16s | 4.57798e+06 | 0 |
PROGRESS: | 2270 | 16m 21s | 4.26944e+06 | 0 |
PROGRESS: | 2280 | 16m 26s | 4.79986e+06 | 0 |
PROGRESS: | 2290 | 16m 31s | 4.47916e+06 | 0 |
PROGRESS: | 2300 | 16m 35s | 4.69962e+06 | 0 |
PROGRESS: | 2310 | 16m 40s | 4.45616e+06 | 0 |
PROGRESS: | 2320 | 16m 45s | 4.45254e+06 | 0 |
PROGRESS: | 2330 | 16m 50s | 4.21933e+06 | 0 |
PROGRESS: | 2340 | 16m 56s | 3.88585e+06 | 0 |
PROGRESS: | 2350 | 17m 1s | 4.75735e+06 | 0 |
PROGRESS: | 2360 | 17m 6s | 4.49801e+06 | 0 |
PROGRESS: | 2370 | 17m 11s | 3.70626e+06 | 0 |
PROGRESS: | 2380 | 17m 16s | 4.69068e+06 | 0 |
PROGRESS: | 2390 | 17m 21s | 3.78046e+06 | 0 |
PROGRESS: | 2400 | 17m 27s | 3.82714e+06 | 0 |
PROGRESS: | 2410 | 17m 32s | 4.29387e+06 | 0 |
PROGRESS: | 2420 | 17m 37s | 4.23766e+06 | 0 |
PROGRESS: | 2430 | 17m 42s | 4.39951e+06 | 0 |
PROGRESS: | 2440 | 17m 47s | 4.40527e+06 | 0 |
PROGRESS: | 2450 | 17m 52s | 4.49867e+06 | 0 |
PROGRESS: | 2460 | 17m 57s | 4.55966e+06 | 0 |
PROGRESS: | 2470 | 18m 2s | 4.40979e+06 | 0 |
PROGRESS: | 2480 | 18m 7s | 4.51377e+06 | 0 |
PROGRESS: | 2490 | 18m 11s | 4.30073e+06 | 0 |
PROGRESS: | 2500 | 18m 16s | 4.66434e+06 | 0 |
PROGRESS: | 2510 | 18m 21s | 4.43723e+06 | 0 |
PROGRESS: | 2520 | 18m 26s | 4.33696e+06 | 0 |
PROGRESS: | 2530 | 18m 31s | 4.44306e+06 | 0 |
PROGRESS: | 2540 | 18m 36s | 4.60931e+06 | 0 |
PROGRESS: | 2550 | 18m 40s | 4.29257e+06 | 0 |
PROGRESS: | 2560 | 18m 45s | 4.84307e+06 | 0 |
PROGRESS: | 2570 | 18m 50s | 4.59479e+06 | 0 |
PROGRESS: | 2580 | 18m 54s | 4.79189e+06 | 0 |
PROGRESS: | 2590 | 18m 59s | 5.00048e+06 | 0 |
PROGRESS: | 2600 | 19m 3s | 4.58225e+06 | 0 |
PROGRESS: | 2610 | 19m 8s | 4.44892e+06 | 0 |
PROGRESS: | 2620 | 19m 13s | 4.24166e+06 | 0 |
PROGRESS: | 2630 | 19m 18s | 4.72903e+06 | 0 |
PROGRESS: | 2640 | 19m 22s | 4.28621e+06 | 0 |
PROGRESS: | 2650 | 19m 28s | 4.16912e+06 | 0 |
PROGRESS: | 2660 | 19m 32s | 4.76708e+06 | 0 |
PROGRESS: | 2670 | 19m 37s | 4.47706e+06 | 0 |
PROGRESS: | 2680 | 19m 42s | 4.19275e+06 | 0 |
PROGRESS: | 2690 | 19m 47s | 4.56176e+06 | 0 |
PROGRESS: | 2700 | 19m 52s | 4.52325e+06 | 0 |
PROGRESS: | 2710 | 19m 57s | 4.78738e+06 | 0 |
PROGRESS: | 2720 | 20m 2s | 4.41018e+06 | 0 |
PROGRESS: | 2730 | 20m 6s | 4.82358e+06 | 0 |
PROGRESS: | 2740 | 20m 11s | 4.30686e+06 | 0 |
PROGRESS: | 2750 | 20m 16s | 4.60166e+06 | 0 |
PROGRESS: | 2760 | 20m 21s | 4.56818e+06 | 0 |
PROGRESS: | 2770 | 20m 25s | 4.66626e+06 | 0 |
PROGRESS: | 2780 | 20m 30s | 4.51772e+06 | 0 |
PROGRESS: | 2790 | 20m 35s | 4.56473e+06 | 0 |
PROGRESS: | 2800 | 20m 40s | 4.26625e+06 | 0 |
PROGRESS: | 2810 | 20m 45s | 4.43764e+06 | 0 |
PROGRESS: | 2820 | 20m 50s | 4.19352e+06 | 0 |
PROGRESS: | 2830 | 20m 55s | 4.39982e+06 | 0 |
PROGRESS: | 2840 | 21m 1s | 4.43111e+06 | 0 |
PROGRESS: | 2850 | 21m 5s | 4.82279e+06 | 0 |
PROGRESS: | 2860 | 21m 10s | 4.61505e+06 | 0 |
PROGRESS: | 2870 | 21m 15s | 4.62852e+06 | 0 |
PROGRESS: | 2880 | 21m 19s | 4.57006e+06 | 0 |
PROGRESS: | 2890 | 21m 24s | 4.58023e+06 | 0 |
PROGRESS: | 2900 | 21m 29s | 4.62587e+06 | 0 |
PROGRESS: | 2910 | 21m 34s | 4.61136e+06 | 0 |
PROGRESS: | 2920 | 21m 39s | 4.44602e+06 | 0 |
PROGRESS: | 2930 | 21m 44s | 4.6914e+06 | 0 |
PROGRESS: | 2940 | 21m 48s | 4.63902e+06 | 0 |
PROGRESS: | 2950 | 21m 53s | 4.93341e+06 | 0 |
PROGRESS: | 2960 | 21m 58s | 4.83688e+06 | 0 |
PROGRESS: | 2970 | 22m 2s | 5.00597e+06 | 0 |
PROGRESS: | 2980 | 22m 7s | 4.7511e+06 | 0 |
PROGRESS: | 2990 | 22m 11s | 4.57458e+06 | 0 |
PROGRESS: | 3000 | 22m 17s | 3.65077e+06 | 0 |
PROGRESS: +-----------+---------------+----------------+-----------------+
CPU times: user 432 ms, sys: 647 ms, total: 1.08 s
Wall time: 22min 19s
In [58]:
pyLDAvis.graphlab.prepare(topic_model, docs)
Out[58]:
Content source: kcompher/pyLDAvis
Similar notebooks: