In [3]:
import pandas as pd
In [5]:
df_curated = pd.read_csv("./statistics/R31_2017-06-26_curated.tsv", sep="\t")
df_curated["curated"] = 1
df_curated_stat = df_curated.describe()
df_curated_stat.to_csv("./results/r31_curated_stat.tsv", sep="\t")
df_uncurated = pd.read_csv("./statistics/R31_2017-06-26_non_curated.tsv", sep="\t")
df_uncurated["curated"] = 0
df_uncurated_stat = df_uncurated.describe()
df_uncurated_stat.to_csv("./results/r31_uncurated_stat.tsv", sep="\t")
df_all = pd.concat([df_curated, df_uncurated])
df_all_stat = df_all.describe()
df_all_stat.to_csv("./results/r31_all_stat.tsv", sep="\t")
In [6]:
import seaborn as sns
sns.set(style="ticks")
In [7]:
cols = ["function_definitions", "unit_definitions",
"compartments", "species", "reactions", "kinetic_laws",
"parameters", "parameters_local",
"initial_assignments", "rules", "events", "math", "curated"]
In [8]:
ax = sns.pairplot(df_all[cols], diag_kind="hist", hue="curated")
ax.savefig("./figures/math_analysis_01.png")
In [9]:
cols = ["function_definitions", "kinetic_laws_math", "initial_assignments", "rules", "events_math", "math", "curated"]
ax = sns.pairplot(df_all[cols], diag_kind="hist", hue="curated")
In [91]:
for key, df in {"curated": df_curated, "uncurated": df_uncurated, "all": df_all}.items():
print("-"*80)
print(key)
print("Q50%={:.2f}, mean={:.2f}, std={:.2f}".format(df.math.quantile(q=0.5), df.math.mean(), df.math.std()))
In [ ]: