Import the required packages and instantiate the animation
In [1]:
from gvanim import Animation
from gvanim.jupyter import interactive
ga = Animation()
Define an heap
In [2]:
heap = [ None, 5, 6, 7, 8, 9, 10, 11, 12 ]
Now draw it (nodes will be named as the array indices and labelled as the array values)
In [3]:
ga.label_node( 1, heap[ 1 ] )
for i in range( 2, len( heap ) ):
ga.label_node( i, heap[ i ] )
ga.add_edge( i // 2, i )
Define the usual iterative down heap procedure (endowed with animation actions)
In [4]:
def down_heap( i, n ):
t = heap[ i ]
while i <= n // 2:
ga.highlight_node( i )
ga.next_step()
j = 2 * i
if j < n and heap[ j ] < heap[ j + 1 ]: j += 1
ga.highlight_edge( i, j )
ga.next_step()
if t >= heap[ j ]: break
heap[ i ] = heap[ j ]
ga.highlight_node( i )
ga.highlight_node( j )
ga.label_node( i, heap[ i ] )
ga.label_node( j, heap[ j ] )
ga.next_step()
i = j
heap[ i ] = t
ga.highlight_node( i )
ga.label_node( i, heap[ i ] )
ga.next_step()
Fix the heap calling down_heap
on his lower half
In [5]:
n = len( heap ) - 1
ga.next_step()
for i in range( n // 2, 0, -1 ):
down_heap( i, n )
And finally exchange the top with heap positions starting form the last one (fixing again with down_heap
)
In [6]:
ga.next_step()
while n > 1:
heap[ 1 ], heap[ n ] = heap[ n ], heap[ 1 ]
ga.highlight_node( 1 )
ga.highlight_node( n )
ga.label_node( 1, heap[ 1 ] )
ga.label_node( n, heap[ n ] )
ga.next_step()
n -= 1
down_heap( 1, n )
We are ready to plot the animation interactively!
Be patient: to generate the required 68 graphs will take quite a bit of time; moreover, in case Jupyter does not correctly resize the cell just zoom in and out the document size (with the browser).
In [7]:
interactive( ga, 400 )