In [3]:
import numpy as np
import vaex as vx
import pylab
ds = vx.open("/home/data/gavi/Aq-A-2-999-shuffled-10percent.hdf5")
print ds
#server = vx.server("localhost")
#ds = server.open("../data/Aq-A-2-999-shuffled-1percent.hdf5")
%matplotlib inline
table
Out[3]:
In [4]:
subspace = ds("x", "y")
subspace.plot(f=np.log)
In [5]:
limits = subspace.limits_sigma(square=True, sigmas=0.4)
means = subspace.mean()
print "limits", limits
In [6]:
grid = subspace.histogram(size=256, limits=limits)
In [7]:
pylab.figure(num=None, figsize=(10, 10), dpi=80, facecolor='w', edgecolor='k')
subspace.plot(np.log10(grid+1), limits, center=means)
pylab.scatter(0, 0)
Out[7]:
In [8]:
limits = subspace.limits_sigma(sigmas=4, square=True)
grid = subspace.histogram(size=512, limits=limits)
pylab.figure(num=None, figsize=(10, 10), dpi=80, facecolor='w', edgecolor='k')
subspace.plot(grid, limits=limits, f=np.log1p, cmap='afmhot')
In [9]:
#reload_ext autoreload
%load_ext autoreload
%autoreload 2
In [10]:
ds.select("(z<48)")
selected = subspace.selected()
grid_masked1 = selected.histogram(size=512, limits=limits)
ds.select("(z>50)")
grid_masked2 = selected.histogram(size=512, limits=limits)
In [11]:
cmap = 'afmhot'
pylab.figure(num=None, figsize=(10, 10), dpi=80, facecolor='w', edgecolor='k')
subspace.plot(np.log(grid+1), limits=limits, cmap=cmap, alpha=1.0)
#subspace.plot(np.log(grid_masked), limits=limits, cmap=cmap, alpha=0.5)
pylab.contour(np.log(grid_masked1), 2, extent=np.array(limits).flatten(), alpha=0.8, colors="green")
pylab.contour(np.log(grid_masked2), 2, linewidth="2pt", colors="blue", extent=np.array(limits).flatten(), alpha=0.8)
Out[11]:
In [12]:
subspace = ds("x", "y")
In [13]:
subspace.mean()
Out[13]:
In [2]:
ls
In [ ]: