All (or most of) the changes in scatter and quiver plots are (linearly) interpolated. On top top that, scatter plots and quiver plots can take a sequence of arrays (the first dimension), where only one array is visualized. Together this can make smooth animations with coarse timesteps. Lets see an example.
In [ ]:
import ipyvolume as ipv
import numpy as np
In [ ]:
# only x is a sequence of arrays
x = np.array([[-1, -0.8], [1, -0.1], [0., 0.5]])
y = np.array([0.0, 0.0])
z = np.array([0.0, 0.0])
ipv.figure()
s = ipv.scatter(x, y, z, marker='sphere', size=10)
ipv.xyzlim(-1, 1)
ipv.animation_control(s) # shows controls for animation controls
ipv.show()
You can control which array to visualize, using the scatter.sequence_index property. Actually, the pylab.animate_glyphs is connecting the Slider and Play button to that property, but you can also set it from Python.
In [ ]:
s.sequence_index = 1
In [ ]:
# create 2d grids: x, y, and r
u = np.linspace(-10, 10, 25)
x, y = np.meshgrid(u, u)
r = np.sqrt(x**2+y**2)
print("x,y and z are of shape", x.shape)
# and turn them into 1d
x = x.flatten()
y = y.flatten()
r = r.flatten()
print("and flattened of shape", x.shape)
Now we only animate the z component
In [ ]:
# create a sequence of 15 time elements
time = np.linspace(0, np.pi*2, 15)
z = np.array([(np.cos(r + t) * np.exp(-r/5)) for t in time])
print("z is of shape", z.shape)
In [ ]:
# draw the scatter plot, and add controls with animate_glyphs
ipv.figure()
s = ipv.scatter(x, z, y, marker="sphere")
ipv.animation_control(s, interval=200)
ipv.ylim(-3,3)
ipv.show()
In [ ]:
# Now also include, color, which containts rgb values
color = np.array([[np.cos(r + t), 1-np.abs(z[i]), 0.1+z[i]*0] for i, t in enumerate(time)])
size = (z+1)
print("color is of shape", color.shape)
color is of the wrong shape, the last dimension should contain the rgb value, i.e. the shape of should be (15, 2500, 3)
In [ ]:
color = np.transpose(color, (0, 2, 1)) # flip the last axes
In [ ]:
ipv.figure()
s = ipv.scatter(x, z, y, color=color, size=size, marker="sphere")
ipv.animation_control(s, interval=200)
ipv.ylim(-3,3)
ipv.show()
In [ ]:
# This is commented out, otherwise it would run on readthedocs
# def set_view(figure, framenr, fraction):
# ipv.view(fraction*360, (fraction - 0.5) * 180, distance=2 + fraction*2)
# s.size = size * (2+0.5*np.sin(fraction * 6 * np.pi))
# ipv.movie('wave.gif', set_view, fps=20, frames=40)
In [ ]:
import ipyvolume.datasets
stream = ipyvolume.datasets.animated_stream.fetch()
print("shape of steam data", stream.data.shape) # first dimension contains x, y, z, vx, vy, vz, then time, then particle
In [ ]:
fig = ipv.figure()
# instead of doing x=stream.data[0], y=stream.data[1], ... vz=stream.data[5], use *stream.data
# limit to 50 timesteps to avoid having a huge notebook
q = ipv.quiver(*stream.data[:,0:50,:200], color="red", size=7)
ipv.style.use("dark") # looks better
ipv.animation_control(q, interval=200)
ipv.show()
In [ ]:
# fig.animation = 0 # set to 0 for no interpolation