In [123]:
import os
import sys
import random
import time
from random import seed, randint
import argparse
import platform
from datetime import datetime
import imp
import numpy as np
import fileinput
from itertools import product
import pandas as pd
from scipy.interpolate import griddata
from scipy.interpolate import interp2d
import seaborn as sns
from os import listdir

import matplotlib.pyplot as plt
import seaborn as sns
from scipy.interpolate import griddata
import matplotlib as mpl
sys.path.insert(0,'..')
from notebookFunctions import *
import scipy
# from .. import notebookFunctions

%matplotlib inline
plt.rcParams['figure.figsize'] = (10,6.180)    #golden ratio
# %matplotlib notebook
%load_ext autoreload
%autoreload 2


The autoreload extension is already loaded. To reload it, use:
  %reload_ext autoreload

In [125]:
pre = "/Users/weilu/Research/server_backup/may_2018/03_week"
temp = 370
location = pre + "/second_start_extended_combined_2/_280-350/2d_zAverage_dis/more_bins/"
location2 = location + f"perturbation-2-pmf-{temp}.dat"
zmax=25
res=40
path_origin, f_origin = shortest_path_2(location2, start=(18, 30), end=(29,1),save=False, xlabel="Distance", ylabel="AverageZ", zmax=zmax,res=res)
# print(getBound(location2, res=res, zmax=zmax))
xmin,xmax,ymin,ymax = getBound(location2, res=res, zmax=zmax)



In [128]:
pre = "/Users/weilu/Research/server_backup/may_2018/03_week"
temp = 370
location = pre + "/enhance_go/_280-350/2d_zAverage_dis/force_0.25/"
location2 = location + f"perturbation-2-pmf-{temp}.dat"
zmax=25
res=40
path_origin, f_origin = shortest_path_2(location2, start=(18, 30), end=(29,1),save=False, xlabel="Distance", ylabel="AverageZ", zmax=zmax,res=res)
# print(getBound(location2, res=res, zmax=zmax))
xmin,xmax,ymin,ymax = getBound(location2, res=res, zmax=zmax)



In [126]:
pre = "/Users/weilu/Research/server_backup/may_2018/03_week"
temp = 370
location = pre + "/enhance_go/_280-350/2d_zAverage_dis/force_0.2/"
location2 = location + f"perturbation-2-pmf-{temp}.dat"
zmax=25
res=40
path_origin, f_origin = shortest_path_2(location2, start=(18, 30), end=(29,1),save=False, xlabel="Distance", ylabel="AverageZ", zmax=zmax,res=res)
# print(getBound(location2, res=res, zmax=zmax))
xmin,xmax,ymin,ymax = getBound(location2, res=res, zmax=zmax)


Bin50 is not better than bin40


In [2]:
pre = "/Users/weilu/Research/server/may_2018/03_week"
temp = 370
location = pre + "/second_start_extended_combined_2/_280-350/2d_zAverage_dis/more_bins/"
location2 = location + f"perturbation-2-pmf-{temp}.dat"
zmax=25
res=40
path_origin, f_origin = shortest_path_2(location2, start=(18, 30), end=(29,1),save=False, xlabel="Distance", ylabel="AverageZ", zmax=zmax,res=res)
# print(getBound(location2, res=res, zmax=zmax))
xmin,xmax,ymin,ymax = getBound(location2, res=res, zmax=zmax)



In [11]:
pre = "/Users/weilu/Research/server/may_2018/03_week"
temp = 370
location = pre + "/second_start_extended_combined_2/_280-350/2d_zAverage_dis/even_more_bins/"
location2 = location + f"perturbation-2-pmf-{temp}.dat"
zmax=25
res=50
path_origin, f_origin = shortest_path_2(location2, start=(18, 40), end=(29,1),save=False, xlabel="Distance", ylabel="AverageZ", zmax=zmax,res=res)
# print(getBound(location2, res=res, zmax=zmax))
xmin,xmax,ymin,ymax = getBound(location2, res=res, zmax=zmax)


Small temperature change is not significant


In [76]:
pre = "/Users/weilu/Research/server/may_2018/03_week"
temp = 370
location = pre + "/second_start_extended_combined_2/_280-350/2d_zAverage_dis/small_temp_change/"
location2 = location + f"perturbation-2-pmf-{temp}.dat"
zmax=25
res=40
path_origin, f_370 = shortest_path_2(location2, start=(18, 30), end=(29,1),save=False, xlabel="Distance", ylabel="AverageZ", zmax=zmax,res=res)
# print(getBound(location2, res=res, zmax=zmax))
xmin,xmax,ymin,ymax = getBound(location2, res=res, zmax=zmax)



In [77]:
pre = "/Users/weilu/Research/server/may_2018/03_week"
temp = 376
location = pre + "/second_start_extended_combined_2/_280-350/2d_zAverage_dis/small_temp_change/"
location2 = location + f"perturbation-2-pmf-{temp}.dat"
zmax=25
res=40
path_origin, f_376 = shortest_path_2(location2, start=(18, 30), end=(29,1),save=False, xlabel="Distance", ylabel="AverageZ", zmax=zmax,res=res)
# print(getBound(location2, res=res, zmax=zmax))
xmin,xmax,ymin,ymax = getBound(location2, res=res, zmax=zmax)



In [78]:
pre = "/Users/weilu/Research/server/may_2018/03_week"
temp = 373
location = pre + "/second_start_extended_combined_2/_280-350/2d_zAverage_dis/small_temp_change/"
location2 = location + f"perturbation-2-pmf-{temp}.dat"
zmax=25
res=40
path_origin, f_373 = shortest_path_2(location2, start=(18, 30), end=(29,1),save=False, xlabel="Distance", ylabel="AverageZ", zmax=zmax,res=res)
# print(getBound(location2, res=res, zmax=zmax))
xmin,xmax,ymin,ymax = getBound(location2, res=res, zmax=zmax)



In [80]:
plt.plot(f_370, label="370")
plt.plot(f_373, label="373")
plt.plot(f_376, label="376")
plt.legend()


Out[80]:
<matplotlib.legend.Legend at 0x1a22a91f60>

Expected Energy

Go and Lipid afffect the barrier from native to transition state


In [113]:
pre = "/Users/weilu/Research/server/may_2018/03_week"
temp = 370
location = pre + "/second_start_extended_combined_2/_280-350/2d_zAverage_dis/expected_energys/"
location2 = location + f"perturbation-2-pmf-{temp}.dat"
zmax=25
res=40
path_origin, f_origin = shortest_path_2(location2, start=(18, 30), end=(29,1),save=True, xlabel="Distance", ylabel="AverageZ", zmax=zmax,res=res)
# print(getBound(location2, res=res, zmax=zmax))
xmin,xmax,ymin,ymax = getBound(location2, res=res, zmax=zmax)



In [70]:
pre = "/Users/weilu/Research/server/may_2018/03_week"
temp = 370
location = pre + "/second_start_extended_combined_2/_280-350/2d_zAverage_dis/expected_energys/"
location2 = location + f"perturbation-2-pmf-{temp}.dat"
zmax=25
res=40
path_origin, f_origin = shortest_path_2(location2, start=(18, 30), end=(29,1),save=False, xlabel="Distance", ylabel="AverageZ", zmax=zmax,res=res)
# print(getBound(location2, res=res, zmax=zmax))
xmin,xmax,ymin,ymax = getBound(location2, res=res, zmax=zmax)


Go


In [118]:
location3 = location + f"perturbation-2-evpb-{temp}.dat"
path = path_origin
outname = "/Users/weilu/Dropbox/GlpG_paper_2018/figures/2d_expected_energy_go.png"
f = plot2d(location3, path, zmin=-800, zmax=120, 
                    res=res, xlabel="Distance", ylabel="AverageZ",
                   xmin=xmin,xmax=xmax,ymin=ymin,ymax=ymax, outname=outname)
x = np.arange(len(f))
x_smooth = np.linspace(x.min(), x.max(), 200)
spl1 = scipy.interpolate.interp1d(x, f_origin, kind="cubic")
# plt.plot(x_smooth1, spl1(x_smooth1))

spl = scipy.interpolate.interp1d(x, f, kind="cubic")
# plt.plot(x_smooth, spl(x_smooth))
# Create axes
fig, ax = plt.subplots()
ax1, ax2 = two_scales(ax, x_smooth, spl1(x_smooth), spl(x_smooth), 'r', 'b')

color_y_axis(ax1, 'r')
color_y_axis(ax2, 'b')
# plt.show()
plt.savefig("/Users/weilu/Dropbox/GlpG_paper_2018/figures/1d_expected_energy_go.png")



In [114]:
location3 = location + f"perturbation-2-evpb-{temp}.dat"
path = path_origin
outname = "/Users/weilu/Dropbox/GlpG_paper_2018/figures/2d_expected_energy_go.png"
f = plot2d(location3, path, zmin=-800, zmax=120, 
                    res=res, xlabel="Distance", ylabel="AverageZ",
                   xmin=xmin,xmax=xmax,ymin=ymin,ymax=ymax, outname=outname)

# plt.plot(xi[path[:,1]], yi[path[:,0]], 'r.-')
plt.figure()
fig, ax = plt.subplots()
ax1, ax2 = two_scales(ax, np.arange(len(f)), f_origin, f, 'r', 'b')


<matplotlib.colors.LinearSegmentedColormap object at 0x1a153161d0>
<matplotlib.figure.Figure at 0x1a21df3390>

Lipid


In [119]:
location3 = location + f"perturbation-2-evpb-{temp}.dat"
path = path_origin
name = "lipid"
outname = f"/Users/weilu/Dropbox/GlpG_paper_2018/figures/2d_expected_energy_{name}.png"
f = plot2d(location3, path, zmin=-800, zmax=120, z=4,
                    res=res, xlabel="Distance", ylabel="AverageZ",
                   xmin=xmin,xmax=xmax,ymin=ymin,ymax=ymax, outname=outname)
x = np.arange(len(f))
x_smooth = np.linspace(x.min(), x.max(), 200)
spl1 = scipy.interpolate.interp1d(x, f_origin, kind="cubic")
# plt.plot(x_smooth1, spl1(x_smooth1))

spl = scipy.interpolate.interp1d(x, f, kind="cubic")
# plt.plot(x_smooth, spl(x_smooth))
# Create axes
fig, ax = plt.subplots()
ax1, ax2 = two_scales(ax, x_smooth, spl1(x_smooth), spl(x_smooth), 'r', 'b')

color_y_axis(ax1, 'r')
color_y_axis(ax2, 'b')
# plt.show()
plt.savefig(f"/Users/weilu/Dropbox/GlpG_paper_2018/figures/1d_expected_energy_{name}.png")


<matplotlib.colors.LinearSegmentedColormap object at 0x1a153161d0>

In [72]:
location3 = location + f"perturbation-2-evpb-{temp}.dat"
path = path_origin
f = plot2d(location3, path, zmin=-800, zmax=120, z=4,
                    res=res, xlabel="Distance", ylabel="AverageZ",
                   xmin=xmin,xmax=xmax,ymin=ymin,ymax=ymax)

# plt.plot(xi[path[:,1]], yi[path[:,0]], 'r.-')
plt.figure()
fig, ax = plt.subplots()
ax1, ax2 = two_scales(ax, np.arange(len(f)), f_origin, f, 'r', 'b')


<matplotlib.colors.LinearSegmentedColormap object at 0x1a153161d0>
<matplotlib.figure.Figure at 0x1a240e12b0>

Membrane


In [120]:
location3 = location + f"perturbation-2-evpb-{temp}.dat"
path = path_origin
name = "membrane"
outname = f"/Users/weilu/Dropbox/GlpG_paper_2018/figures/2d_expected_energy_{name}.png"
f = plot2d(location3, path, zmin=-800, zmax=120, z=5,
                    res=res, xlabel="Distance", ylabel="AverageZ",
                   xmin=xmin,xmax=xmax,ymin=ymin,ymax=ymax, outname=outname)
x = np.arange(len(f))
x_smooth = np.linspace(x.min(), x.max(), 200)
spl1 = scipy.interpolate.interp1d(x, f_origin, kind="cubic")
# plt.plot(x_smooth1, spl1(x_smooth1))

spl = scipy.interpolate.interp1d(x, f, kind="cubic")
# plt.plot(x_smooth, spl(x_smooth))
# Create axes
fig, ax = plt.subplots()
ax1, ax2 = two_scales(ax, x_smooth, spl1(x_smooth), spl(x_smooth), 'r', 'b')

color_y_axis(ax1, 'r')
color_y_axis(ax2, 'b')
# plt.show()
plt.savefig(f"/Users/weilu/Dropbox/GlpG_paper_2018/figures/1d_expected_energy_{name}.png")


<matplotlib.colors.LinearSegmentedColormap object at 0x1a153161d0>

In [73]:
location3 = location + f"perturbation-2-evpb-{temp}.dat"
path = path_origin
f = plot2d(location3, path, zmin=-800, zmax=120, z=5,
                    res=res, xlabel="Distance", ylabel="AverageZ",
                   xmin=xmin,xmax=xmax,ymin=ymin,ymax=ymax)

# plt.plot(xi[path[:,1]], yi[path[:,0]], 'r.-')
plt.figure()
fig, ax = plt.subplots()
ax1, ax2 = two_scales(ax, np.arange(len(f)), f_origin, f, 'r', 'b')


<matplotlib.colors.LinearSegmentedColormap object at 0x1a153161d0>
<matplotlib.figure.Figure at 0x1a2099dc18>

Rg


In [121]:
location3 = location + f"perturbation-2-evpb-{temp}.dat"
path = path_origin
name = "rg"
outname = f"/Users/weilu/Dropbox/GlpG_paper_2018/figures/2d_expected_energy_{name}.png"
f = plot2d(location3, path, zmin=-800, zmax=120, z=6,
                    res=res, xlabel="Distance", ylabel="AverageZ",
                   xmin=xmin,xmax=xmax,ymin=ymin,ymax=ymax, outname=outname)
x = np.arange(len(f))
x_smooth = np.linspace(x.min(), x.max(), 200)
spl1 = scipy.interpolate.interp1d(x, f_origin, kind="cubic")
# plt.plot(x_smooth1, spl1(x_smooth1))

spl = scipy.interpolate.interp1d(x, f, kind="cubic")
# plt.plot(x_smooth, spl(x_smooth))
# Create axes
fig, ax = plt.subplots()
ax1, ax2 = two_scales(ax, x_smooth, spl1(x_smooth), spl(x_smooth), 'r', 'b')

color_y_axis(ax1, 'r')
color_y_axis(ax2, 'b')
# plt.show()
plt.savefig(f"/Users/weilu/Dropbox/GlpG_paper_2018/figures/1d_expected_energy_{name}.png")


<matplotlib.colors.LinearSegmentedColormap object at 0x1a153161d0>

In [74]:
location3 = location + f"perturbation-2-evpb-{temp}.dat"
path = path_origin
f = plot2d(location3, path, zmin=-800, zmax=120, z=6,
                    res=res, xlabel="Distance", ylabel="AverageZ",
                   xmin=xmin,xmax=xmax,ymin=ymin,ymax=ymax)

# plt.plot(xi[path[:,1]], yi[path[:,0]], 'r.-')
plt.figure()
fig, ax = plt.subplots()
ax1, ax2 = two_scales(ax, np.arange(len(f)), f_origin, f, 'r', 'b')


<matplotlib.colors.LinearSegmentedColormap object at 0x1a153161d0>
<matplotlib.figure.Figure at 0x1a2404d5c0>

Perturbation on Lipid potential


In [94]:
pre = "/Users/weilu/Research/server/may_2018/03_week"
temp = 370
location = pre + "/second_start_extended_combined_2/_280-350/2d_zAverage_dis/lipid_change/"
location2 = location + f"perturbation-3-pmf-{temp}.dat"
zmax=25
res=40
path_origin, f_origin = shortest_path_2(location2, start=(18, 30), end=(29,1),save=False, xlabel="Distance", ylabel="AverageZ", zmax=zmax,res=res)
# print(getBound(location2, res=res, zmax=zmax))
xmin,xmax,ymin,ymax = getBound(location2, res=res, zmax=zmax)



In [95]:
perturbation_table = {3:"Decrease 10% Lipid",
                      4:"Increase 10% Lipid",
                      5:"Decrease 20% Lipid",
                      6:"Increase 20% Lipid",
                      7:"Decrease 30% Lipid",
                      8:"Increase 30% Lipid",
                      9:"Decrease 50% Lipid",
                      10:"Increase 50% Lipid",}
all_path = {}
all_f = {}
all_location = {}

In [96]:
for i in perturbation_table:
#     print(i,perturbation_table[i])
    location_i = location + f"perturbation-{i}-pmf-{temp}.dat"
    path, f = plot_shortest_path(location_i, path, save=False, 
                               xlabel="Distance", ylabel="AverageZ", zmax=zmax,res=res,
                              xmin=xmin,xmax=xmax,ymin=ymin,ymax=ymax, plot2d=False)
    all_path[i] = path
    all_f[i] = f
    all_location[i] = location_i

In [102]:
i = 3
j = 4
# title = "Go"
plot2d_side_by_side(all_location[i], all_location[j], title1=perturbation_table[i], title2=perturbation_table[j])
# plt.savefig(f"/Users/weilu/Dropbox/GlpG_paper_2018/figures/{title}_compare.png", dpi=300)
plt.figure()
plt.plot(f_origin, label="original")
plt.plot(all_f[i], label=perturbation_table[i])
plt.plot(all_f[j], label=perturbation_table[j])
plt.ylim([0,17.5])
plt.legend(prop={'size': 20})
# plt.savefig(f"/Users/weilu/Dropbox/GlpG_paper_2018/figures/{title}_1d.png", dpi=300)


Out[102]:
<matplotlib.legend.Legend at 0x1a225126d8>

In [99]:
i = 5
j = 6
# title = "Go"
plot2d_side_by_side(all_location[i], all_location[j], title1=perturbation_table[i], title2=perturbation_table[j])
# plt.savefig(f"/Users/weilu/Dropbox/GlpG_paper_2018/figures/{title}_compare.png", dpi=300)
plt.figure()
plt.plot(f_origin, label="original")
plt.plot(all_f[i], label=perturbation_table[i])
plt.plot(all_f[j], label=perturbation_table[j])
plt.ylim([0,17.5])
plt.legend(prop={'size': 20})
# plt.savefig(f"/Users/weilu/Dropbox/GlpG_paper_2018/figures/{title}_1d.png", dpi=300)


Out[99]:
<matplotlib.legend.Legend at 0x1a241dac18>

In [100]:
i = 7
j = 8
# title = "Go"
plot2d_side_by_side(all_location[i], all_location[j], title1=perturbation_table[i], title2=perturbation_table[j])
# plt.savefig(f"/Users/weilu/Dropbox/GlpG_paper_2018/figures/{title}_compare.png", dpi=300)
plt.figure()
plt.plot(f_origin, label="original")
plt.plot(all_f[i], label=perturbation_table[i])
plt.plot(all_f[j], label=perturbation_table[j])
plt.ylim([0,17.5])
plt.legend(prop={'size': 20})
# plt.savefig(f"/Users/weilu/Dropbox/GlpG_paper_2018/figures/{title}_1d.png", dpi=300)


Out[100]:
<matplotlib.legend.Legend at 0x1a20f7add8>

In [105]:
i = 9
j = 10
# title = "Go"
plot2d_side_by_side(all_location[i], all_location[j], title1=perturbation_table[i], title2=perturbation_table[j])
# plt.savefig(f"/Users/weilu/Dropbox/GlpG_paper_2018/figures/{title}_compare.png", dpi=300)
plt.figure()
plt.plot(f_origin, label="original")
plt.plot(all_f[i], label=perturbation_table[i])
plt.plot(all_f[j], label=perturbation_table[j])
plt.ylim([0,17.5])
plt.legend(prop={'size': 20})
# plt.savefig(f"/Users/weilu/Dropbox/GlpG_paper_2018/figures/{title}_1d.png", dpi=300)


Out[105]:
<matplotlib.legend.Legend at 0x1a2101b128>

Higher force


In [90]:
pre = "/Users/weilu/Research/server/may_2018/03_week"
temp = 370
location = pre + "/second_start_extended_combined_2/_280-350/2d_zAverage_dis/higer_force_0.2/"
location2 = location + f"perturbation-2-pmf-{temp}.dat"
zmax=25
res=40
path_origin, f_origin = shortest_path_2(location2, start=(10, 35), end=(28,1),save=False, xlabel="Distance", ylabel="AverageZ", zmax=zmax,res=res)
# print(getBound(location2, res=res, zmax=zmax))
xmin,xmax,ymin,ymax = getBound(location2, res=res, zmax=zmax)



In [108]:
pre = "/Users/weilu/Research/server/may_2018/03_week"
temp = 370
location = pre + "/second_start_extended_combined_2/_280-350/2d_zAverage_dis/higer_force_0.25/"
location2 = location + f"perturbation-2-pmf-{temp}.dat"
zmax=35
res=40
path_origin, f_origin = shortest_path_2(location2, start=(10, 35), end=(28,1),save=False, xlabel="Distance", ylabel="AverageZ", zmax=zmax,res=res)
# print(getBound(location2, res=res, zmax=zmax))
xmin,xmax,ymin,ymax = getBound(location2, res=res, zmax=zmax)



In [2]:
pre = "/Users/weilu/Research/server/may_2018/02_week"
temp = 370
location = pre + "/second_2/_280-350/2d_z_qw/more_temp_force_0.05/"
location2 = location + f"perturbation-2-pmf-{temp}.dat"
path, f = shortest_path(location2, start=(1, 5), end=(28,20),save=False, xlabel="z_H6", ylabel="Qw", zmax=25,res=30)
# plt.savefig("/Users/weilu/papers/figures/2d_z6_qw.png", dpi=300)
# plt.savefig("/Users/weilu/papers/figures/shortest_path.png", dpi=300)
location3 = location + f"evpb-{temp}.dat"
(xi,yi,zi) = plot2d(location3, zmax=120)
plt.plot(xi[path[:,1]], yi[path[:,0]], 'r.-')
# plt.savefig("/Users/weilu/papers/figures/2d_expected_dis.png", dpi=300)
plt.figure()
f_on_path = [zi[tuple(p)] for p in reversed(path)]
plt.plot(f_on_path)
# plt.savefig("/Users/weilu/papers/figures/shortest_path_expected_dis.png", dpi=300)


<matplotlib.colors.LinearSegmentedColormap object at 0x1a08622ef0>
Out[2]:
[<matplotlib.lines.Line2D at 0x1a13e9a438>]

In [4]:
data = pd.read_feather("/Users/weilu/Research/server/may_2018/03_week/all_data_folder/second_start_extended_combined_may19.feather")

In [5]:
data.columns


Out[5]:
Index(['level_0', 'AMH', 'AMH-Go', 'AMH_3H', 'AMH_4H', 'BiasTo', 'DisReal',
       'Dis_h56', 'Distance', 'Energy', 'Lipid', 'Lipid1', 'Lipid10',
       'Lipid11', 'Lipid12', 'Lipid13', 'Lipid14', 'Lipid15', 'Lipid2',
       'Lipid3', 'Lipid4', 'Lipid5', 'Lipid6', 'Lipid7', 'Lipid8', 'Lipid9',
       'Membrane', 'Qw', 'Rg', 'Run', 'Step', 'Temp', 'TempT', 'TotalE',
       'abs_z_average', 'index', 'rg1', 'rg2', 'rg3', 'rg4', 'rg5', 'rg6',
       'rg_all', 'z_average', 'z_h1', 'z_h2', 'z_h3', 'z_h4', 'z_h5', 'z_h6'],
      dtype='object')

In [7]:
t = data.query("TempT != 417 and DisReal > 51 \
           and DisReal < 68 and z_average < -2 and z_average > -4")

In [11]:
t.hist("TotalE", bins=50)


Out[11]:
array([[<matplotlib.axes._subplots.AxesSubplot object at 0x1a1432d358>]], dtype=object)

In [12]:
t373 = data.query("TempT == 373 and DisReal > 51 \
           and DisReal < 68 and z_average < -2 and z_average > -4")

In [13]:
t373.hist("TotalE", bins=50)


Out[13]:
array([[<matplotlib.axes._subplots.AxesSubplot object at 0x1a156cff28>]], dtype=object)

In [15]:
t373


Out[15]:
level_0 AMH AMH-Go AMH_3H AMH_4H BiasTo DisReal Dis_h56 Distance Energy ... rg5 rg6 rg_all z_average z_h1 z_h2 z_h3 z_h4 z_h5 z_h6
683666 3666 -170.450419 -426.749452 -235.291257 -297.031401 86.0 66.984802 26.133804 -39.436887 -715.953161 ... 0.510668 1.600425 7.054080 -2.141146 -0.275552 -8.066415 -2.264832 -10.130897 -9.291176 -4.932951
684326 4326 -177.830578 -437.095771 -250.255853 -310.425441 86.0 67.927314 28.206607 -58.291045 -752.707089 ... 2.076313 0.766066 7.543538 -3.534378 -0.414694 -5.504533 -4.430456 -10.213407 -8.030043 -6.049624
684330 4330 -185.264909 -434.855060 -254.481381 -313.882888 86.0 67.692650 28.237313 -51.793680 -743.575607 ... 1.143671 1.136720 6.916791 -3.267389 0.038196 -6.386296 -3.173838 -10.119278 -7.057542 -5.645009
688923 8923 -188.031809 -433.216782 -249.620918 -305.952034 86.0 67.950152 27.687927 54.166484 -717.113728 ... 0.921510 1.377567 6.479207 -2.449509 -2.310806 -8.747525 -5.618711 -9.892821 -4.092180 -4.614485
690143 10143 -203.623358 -408.405636 -270.367668 -313.335235 84.0 67.119372 27.999139 34.053782 -722.537375 ... 1.311176 0.700131 6.935438 -2.112809 -4.426102 -6.360286 -7.488653 -7.171176 -1.713591 -2.644560
690187 10187 -196.694107 -395.838629 -259.103678 -298.971933 84.0 67.249843 28.906046 30.326481 -732.319765 ... 0.823739 2.548891 9.655645 -3.971289 -2.323356 -5.493258 -9.154800 -9.010023 -9.567622 -4.175318
690215 10215 -189.884258 -390.229503 -253.331122 -295.814486 84.0 66.636813 28.726918 31.118911 -698.209069 ... 2.078272 1.139085 6.867146 -3.233827 -2.580547 -9.281420 -7.114008 -10.265433 -4.467263 -8.318917
690247 10247 -207.487671 -410.062247 -270.181090 -314.963140 84.0 67.434216 26.452319 58.263686 -722.901476 ... 0.524122 2.147875 7.033570 -2.947362 -2.469420 -7.417028 -8.604677 -8.501572 -11.267398 -3.011443
690251 10251 -200.044196 -412.017669 -258.825723 -302.971606 84.0 67.328121 23.293007 58.729641 -738.542959 ... 0.725470 1.200791 7.157979 -3.270683 -1.854471 -8.789081 -7.238313 -9.534223 -8.479708 -5.898138
690255 10255 -196.903302 -403.606134 -261.275220 -305.041185 84.0 66.597537 24.920610 61.220220 -735.861539 ... 0.667843 1.342072 7.731316 -2.605524 -1.176631 -6.557001 -7.485386 -8.649971 -4.993786 -6.134283
690323 10323 -205.132963 -404.952301 -263.391635 -307.507014 84.0 65.216615 23.309747 63.973107 -713.490527 ... 0.850891 1.345964 6.545556 -3.122758 -2.641717 -7.987011 -5.451433 -11.701628 -6.596486 -5.437942
690367 10367 -204.926996 -408.818486 -266.338400 -307.469028 84.0 65.524009 26.919668 65.360026 -707.884991 ... 1.390135 1.321012 9.716922 -2.078057 -4.025614 -7.888933 -7.499711 -7.965271 0.396725 -6.310374
690455 10455 -197.618234 -409.802310 -261.444364 -304.274231 84.0 67.716713 26.536630 63.191155 -698.722045 ... 0.780344 0.989474 7.169873 -2.172277 -2.456466 -6.615407 -8.332945 -7.485959 -2.037614 -4.269738
690519 10519 -198.991588 -416.185816 -262.828914 -306.131025 84.0 66.783359 23.626716 62.300963 -753.605344 ... 1.506871 0.719471 8.043762 -2.082546 -1.327295 -8.878935 -7.249552 -7.597885 -4.500511 -4.445926
690527 10527 -199.427222 -417.572465 -262.342255 -308.122104 84.0 66.424369 21.761332 63.942892 -742.851686 ... 0.801714 1.469219 5.961413 -2.201853 -0.502354 -8.326757 -10.057252 -7.294302 -3.278137 -4.036118
690599 10599 -211.238586 -420.355407 -272.433049 -311.931120 84.0 66.390369 26.848202 63.840989 -733.952228 ... 1.041390 1.632424 7.126878 -3.674367 -2.339223 -8.099979 -9.484409 -7.804073 -7.814592 -4.012148
690603 10603 -206.767928 -409.042462 -262.298368 -305.719718 84.0 66.145876 27.028575 64.425883 -703.990924 ... 0.864218 1.381115 6.200428 -3.020418 0.280705 -7.557263 -8.032779 -8.702041 -8.230762 -3.179792
690663 10663 -208.790914 -409.911295 -269.620611 -311.188857 84.0 67.264058 20.408905 66.859180 -698.440716 ... 0.769641 0.973293 6.566508 -2.560937 -1.130568 -6.827076 -6.400070 -9.470620 -8.451001 -5.568279
690667 10667 -190.956032 -398.936846 -252.173258 -297.324740 84.0 65.531942 19.494386 65.399596 -689.692121 ... 0.735361 1.590308 6.724284 -2.625166 -2.524721 -6.821759 -4.476217 -10.360305 -10.398695 -4.739213
690679 10679 -206.048282 -411.460247 -266.136317 -310.241671 84.0 65.954731 24.142428 65.679795 -690.162881 ... 0.626090 3.649915 9.262349 -2.460668 -1.487238 -7.836336 -6.059503 -10.161830 -6.756053 -3.440790
690739 10739 -202.645518 -404.652542 -262.312172 -304.787848 84.0 65.916434 21.193511 63.916999 -656.995826 ... 1.580559 1.328567 8.015571 -2.678172 -0.810523 -4.577538 -7.435583 -7.990632 -7.060500 -4.263847
690747 10747 -192.439709 -394.918869 -253.431023 -292.412486 84.0 65.885082 24.924932 60.388166 -688.176633 ... 1.271789 2.129761 8.559800 -2.782269 -2.551423 -8.647636 -4.018450 -11.157365 -7.304611 -3.104005
690859 10859 -194.834305 -400.345457 -255.512693 -294.723788 84.0 65.799787 26.727390 27.034815 -711.943137 ... 0.669035 1.873127 6.254855 -2.603317 -2.143247 -9.330370 -8.538983 -9.365791 -7.214421 -2.823201
690863 10863 -189.682102 -398.187748 -248.002031 -290.311589 84.0 66.702522 26.819158 34.561392 -656.418039 ... 0.594260 1.406219 6.707783 -3.396914 -2.238319 -8.425378 -11.429035 -11.204041 -7.399251 -6.561784
690867 10867 -184.237776 -391.300819 -239.574021 -286.276331 84.0 64.915381 23.010708 35.147490 -686.526425 ... 0.564631 2.862066 8.611888 -3.774792 -2.573038 -8.602057 -11.699211 -9.699709 -9.657197 -4.904352
690871 10871 -195.751125 -407.337893 -254.510377 -296.676511 84.0 67.927509 27.781529 37.832692 -725.199896 ... 0.724317 2.125361 8.033674 -3.114704 -2.312169 -7.158483 -9.490718 -9.514361 -9.291208 -4.238762
690875 10875 -193.945549 -408.509002 -256.983885 -302.860692 84.0 66.374222 25.941196 27.063822 -731.665846 ... 0.741911 1.439565 5.960207 -3.044849 -1.792628 -6.104533 -9.377963 -8.992146 -8.006128 -4.830189
690879 10879 -188.979138 -390.081625 -249.115825 -289.262546 84.0 63.661735 20.669687 17.378090 -701.147517 ... 0.650621 0.843067 4.545966 -3.066561 -1.748113 -6.430219 -8.190092 -9.252894 -8.895051 -6.098870
690883 10883 -196.516154 -402.887017 -258.531717 -303.298831 84.0 65.405396 26.542827 18.223908 -709.425200 ... 0.528642 1.729519 5.560440 -3.387471 -1.349448 -7.533903 -6.997418 -10.299914 -10.850969 -6.116681
690887 10887 -201.156485 -404.786161 -262.431532 -303.077056 84.0 67.468301 28.553789 25.722431 -721.131477 ... 0.730315 2.975859 7.324996 -2.562295 1.457229 -5.912631 -4.534084 -10.919656 -7.998368 -8.023408
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
1369378 689378 -180.323707 -435.128025 -245.268501 -305.768924 58.0 56.672666 21.495995 50.569646 -778.093490 ... 0.809213 0.690737 5.248491 -2.588169 -1.299288 -7.384771 -6.021109 -10.335717 -6.724899 -6.567272
1369394 689394 -175.419493 -424.431742 -239.308863 -296.764866 58.0 61.161116 22.387550 55.973068 -736.495045 ... 1.067481 0.725100 6.398078 -3.135888 -1.018849 -8.495286 -5.848612 -10.507679 -6.936360 -5.979812
1369398 689398 -165.944897 -421.691494 -233.060030 -290.521135 58.0 59.959166 28.327727 56.717038 -687.455377 ... 0.893030 0.695278 7.440006 -3.575093 0.502977 -7.983188 -7.223280 -10.705026 -6.297507 -8.784116
1369402 689402 -168.696591 -421.341973 -233.540375 -288.248065 58.0 58.083512 23.026583 56.789501 -725.613939 ... 0.705396 0.712978 5.886653 -2.341838 2.450655 -6.573130 -3.857969 -11.362686 -6.750170 -7.812254
1369410 689410 -169.905731 -423.073995 -230.872668 -290.391485 58.0 55.075369 24.875650 52.403608 -703.954528 ... 0.661695 1.744809 9.159681 -2.253779 -2.616866 -7.517999 -1.585598 -8.300001 -5.520183 -3.007193
1369414 689414 -171.966776 -406.214937 -232.095242 -289.211897 58.0 57.459491 23.293949 56.830885 -681.265074 ... 0.804272 1.412799 7.262596 -2.822339 -3.178743 -8.612079 -2.610859 -10.023910 -4.261092 -3.844601
1369486 689486 -186.994671 -417.664119 -241.196922 -300.534501 58.0 53.013559 28.538203 52.722399 -682.820481 ... 1.109016 1.172991 7.160349 -3.243724 -2.897164 -9.893152 -5.603207 -10.508676 -7.474262 -6.455674
1369510 689510 -184.971977 -410.810933 -239.202005 -297.116157 58.0 52.707034 31.208709 52.512279 -727.388440 ... 1.298493 1.200276 6.244463 -3.168358 -1.646690 -7.197175 -6.412059 -10.390096 -4.543224 -6.917837
1369805 689805 -174.371326 -423.320051 -239.706622 -294.541204 58.0 61.520393 24.942100 32.364705 -686.609337 ... 1.239272 1.474958 9.524628 -2.182230 3.093486 -7.351184 -5.859631 -7.550864 -4.706032 -2.414589
1369817 689817 -172.771369 -414.370752 -235.308289 -291.953754 58.0 58.503822 23.447693 41.713169 -673.284846 ... 0.898382 1.258251 8.202878 -3.271329 -2.309698 -7.667836 -3.859552 -9.670478 -6.067062 -3.775251
1369821 689821 -178.816844 -422.251938 -243.207551 -300.779275 58.0 64.182072 24.807051 33.032921 -705.973585 ... 0.641801 1.653863 7.624349 -2.386375 -0.147769 -7.375114 -2.283943 -8.184079 -6.317868 -2.919014
1369833 689833 -178.197109 -419.916586 -242.743327 -302.482565 58.0 54.573232 21.528316 17.549581 -696.447104 ... 0.769931 1.030988 6.604379 -3.614033 -2.684358 -7.871909 -4.126407 -10.631281 -5.656643 -5.265691
1369837 689837 -169.242702 -425.854906 -235.720027 -297.000171 58.0 59.718834 27.956523 17.308517 -708.818165 ... 0.887782 1.366190 7.230217 -2.110167 -2.949829 -6.428368 -2.436802 -8.403163 -3.646848 -2.840254
1369841 689841 -172.996362 -415.210549 -239.417658 -295.886138 58.0 62.341616 25.538294 30.342676 -728.976567 ... 0.954543 1.012418 6.786797 -2.159714 -0.767001 -6.831284 -3.585542 -8.001346 -4.879092 -4.635897
1369845 689845 -175.951662 -420.482766 -242.600715 -300.661125 58.0 66.020409 23.412885 23.138282 -703.551813 ... 0.673152 0.983375 7.175245 -3.102954 -1.806314 -9.197405 -3.500981 -9.460732 -6.900902 -5.147555
1369849 689849 -175.126674 -413.020201 -238.299945 -295.229477 58.0 53.822140 20.412989 27.353582 -717.119514 ... 0.911828 1.030301 7.085484 -2.181621 1.689978 -9.051108 -3.196308 -8.920357 -6.222738 -5.070952
1369877 689877 -178.978954 -442.752594 -251.041686 -310.428351 58.0 57.372251 24.101972 17.117281 -776.186836 ... 0.659232 1.388759 6.917900 -2.973023 -1.793542 -8.572124 -4.241207 -9.666051 -6.467283 -4.315183
1369881 689881 -180.042621 -438.069343 -249.521539 -306.802724 58.0 54.353183 21.930127 22.203907 -746.464074 ... 0.689242 1.189123 8.812953 -2.811149 1.535911 -8.719435 -4.547737 -8.770011 -7.760791 -3.996591
1369897 689897 -175.491874 -436.549102 -245.704789 -307.160820 58.0 61.493837 24.983383 30.374334 -695.119857 ... 1.061845 0.666535 5.954982 -2.356332 -1.761333 -6.591892 -3.830463 -8.876343 -6.461126 -5.000607
1369901 689901 -180.921826 -426.096778 -243.806223 -304.583260 58.0 65.467562 28.888631 26.532383 -655.491230 ... 1.523927 0.576469 6.220829 -2.503380 -0.825682 -5.970642 -6.143692 -9.438208 -7.290208 -5.828049
1369905 689905 -177.214453 -415.670048 -241.089175 -293.190364 58.0 61.558249 21.352841 29.267518 -729.847428 ... 0.882144 0.507857 5.510611 -2.573738 0.886495 -8.164106 -5.841094 -9.640226 -6.933722 -7.022550
1369909 689909 -184.989266 -421.026069 -248.254989 -304.092217 58.0 65.458591 19.869668 33.800344 -750.402341 ... 0.884753 1.009770 6.179620 -2.434685 -0.699694 -6.053573 -6.945642 -10.590377 -3.724284 -5.724874
1369949 689949 -182.867201 -425.713621 -243.044299 -301.830884 58.0 60.753187 24.211236 32.745059 -708.737646 ... 0.833724 1.567063 7.799867 -2.788074 0.158322 -10.072163 -2.016233 -9.945332 -10.334942 -4.894326
1369954 689954 -169.512144 -403.562528 -230.771951 -287.110965 58.0 58.385926 27.295161 58.019990 -665.754320 ... 0.785803 0.898672 5.095570 -2.982549 -0.893082 -7.931155 -3.882855 -11.553770 -12.181218 -5.930881
1369958 689958 -168.248809 -408.656332 -228.646463 -288.215618 58.0 64.031782 26.298688 62.938943 -663.531977 ... 0.523751 1.705066 8.443129 -2.247711 -0.747645 -8.366167 -3.652110 -10.107664 -10.017884 -4.773109
1369962 689962 -171.976391 -408.642097 -232.038082 -290.700566 58.0 59.272057 22.207873 59.010882 -691.452630 ... 0.551707 1.083122 6.955481 -2.469045 0.890776 -8.923173 -4.899560 -10.272681 -9.278195 -5.283235
1369966 689966 -174.179444 -411.980266 -233.579556 -290.616702 58.0 53.961207 24.993706 52.876213 -695.549873 ... 0.662805 1.862573 8.032325 -2.301522 -0.745049 -8.856118 -3.408631 -10.801352 -8.330045 -4.157258
1369974 689974 -178.716410 -418.673108 -242.045290 -298.791496 58.0 57.180724 27.149435 57.146770 -725.623393 ... 0.690497 1.609234 7.266111 -2.648950 0.146495 -10.198642 -4.619366 -11.769098 -4.279254 -4.680950
1369982 689982 -174.178094 -418.339331 -232.609560 -289.983967 58.0 52.460293 21.292009 51.368217 -668.379985 ... 0.634531 1.439340 8.347666 -2.974189 -0.603243 -10.578511 -3.882821 -8.888806 -7.950381 -4.231240
1369994 689994 -173.461338 -404.421160 -231.095617 -288.105001 58.0 54.023554 29.649051 53.137897 -702.681155 ... 1.124590 1.303048 7.098627 -2.276091 1.198180 -8.571212 -5.444549 -9.652026 -6.670493 -5.032806

10095 rows × 50 columns


In [16]:
select(t373)


Out[16]:
count mean std min 25% 50% 75% max
BiasTo Run
58.0 0 164.0 58.959353 4.383157 51.355846 55.218969 58.884139 62.420320 67.677721
2 179.0 58.896697 4.020753 51.051358 55.189069 59.006478 61.734849 67.877750
3 116.0 57.058870 4.000349 51.008300 53.677881 56.968076 59.529415 66.651877
60.0 0 247.0 58.921311 4.381339 51.086533 55.835819 58.771662 62.687725 67.731834
1 235.0 58.307482 4.081437 51.057232 54.888686 58.505485 61.022229 67.051867
62.0 0 301.0 59.884104 4.317887 51.135551 56.654802 59.827492 63.185373 67.970691
1 337.0 60.372263 4.030364 51.328884 57.406279 60.314684 63.725682 67.978842
2 122.0 58.825727 4.286660 51.440458 55.248349 58.379409 62.176576 67.405243
64.0 3 919.0 60.938503 4.148961 51.134149 58.118766 61.309105 64.278665 67.979501
5 548.0 61.341829 4.033957 51.099927 58.396224 61.686396 64.590414 67.965499
66.0 2 1000.0 61.117293 3.885831 51.014952 58.440880 61.301114 64.181268 67.938474
3 817.0 61.555133 3.881837 51.100628 59.046084 61.875465 64.619151 67.976028
5 315.0 60.927723 3.886924 51.380712 57.989457 61.260867 64.136502 67.882567
68.0 1 618.0 62.941671 3.577061 51.749130 60.422742 63.820359 65.968065 67.977633
2 360.0 62.709692 3.637080 51.117616 60.306652 63.318171 65.434900 67.986133
5 266.0 63.118088 3.512747 52.771601 60.618468 64.137759 65.909719 67.872947
70.0 1 190.0 63.187152 3.607405 52.241291 60.502627 64.044288 66.126573 67.998812
2 185.0 63.542112 3.309253 53.391605 61.866484 63.990347 66.363856 67.980271
5 628.0 63.849886 3.122292 51.826737 62.030705 64.432112 66.274656 67.988242
72.0 0 252.0 64.117716 3.363203 52.665611 62.512478 64.929230 66.885838 67.967183
2 244.0 63.958771 3.169318 52.539484 62.312326 64.657964 66.388173 67.975302
3 149.0 63.357248 3.810560 51.357889 61.708642 64.146320 66.265454 67.996480
4 133.0 63.995667 3.300765 52.265336 62.308285 65.138471 66.360343 67.798774
74.0 2 179.0 64.269876 2.871412 55.788808 63.163288 65.038223 66.594729 67.897062
7 215.0 64.799677 2.714039 54.839356 63.215404 65.608561 66.926641 67.988947
76.0 0 367.0 64.604183 2.566398 53.718974 63.180710 65.057184 66.633061 67.981778
4 105.0 64.869686 2.600159 55.287647 63.568517 65.393527 66.794506 67.945785

In [24]:
np.arange(8) // 2


Out[24]:
array([0, 0, 1, 1, 2, 2, 3, 3])

In [25]:
np.arange(8)


Out[25]:
array([0, 1, 2, 3, 4, 5, 6, 7])

In [26]:
t373_narrow = data.query("TempT == 373 and DisReal > 58 \
           and DisReal < 65 and z_average < -2.5 and z_average > -3.5")

In [27]:
t373_narrow


Out[27]:
level_0 AMH AMH-Go AMH_3H AMH_4H BiasTo DisReal Dis_h56 Distance Energy ... rg5 rg6 rg_all z_average z_h1 z_h2 z_h3 z_h4 z_h5 z_h6
690879 10879 -188.979138 -390.081625 -249.115825 -289.262546 84.0 63.661735 20.669687 17.378090 -701.147517 ... 0.650621 0.843067 4.545966 -3.066561 -1.748113 -6.430219 -8.190092 -9.252894 -8.895051 -6.098870
690899 10899 -183.186433 -392.944653 -248.231963 -290.903219 84.0 62.765665 20.238180 4.321019 -722.852166 ... 2.083610 1.751864 8.232831 -2.584027 -0.334311 -4.870930 -4.314226 -7.357321 -12.419326 -3.192265
690951 10951 -198.371330 -418.571828 -262.922682 -306.794288 84.0 63.962096 24.762010 2.996987 -701.801432 ... 1.135109 1.204688 6.678409 -3.242610 -3.586887 -8.136387 -6.533465 -8.381541 -7.687451 -5.183540
690963 10963 -203.890243 -410.824289 -263.026350 -303.628052 84.0 62.684794 26.680936 8.449340 -726.347395 ... 1.423125 1.197325 6.840901 -3.244232 -5.257919 -7.654789 -8.554059 -9.237917 -2.725016 -2.810763
690983 10983 -204.946719 -424.061741 -266.330756 -309.658773 84.0 64.637249 24.843682 23.029081 -695.724410 ... 1.021736 2.023428 8.815642 -3.377480 -4.444977 -7.599188 -7.986603 -8.800486 -7.926119 -5.178974
698563 18563 -200.476719 -406.283196 -254.381890 -298.644399 84.0 63.655067 21.874139 -20.290518 -743.007050 ... 0.734103 1.320845 6.492530 -3.407151 0.666020 -5.851761 -11.573996 -11.560990 -7.626134 -7.147509
700136 20136 -198.617280 -403.437657 -256.952363 -302.751807 76.0 62.154514 20.276552 57.604418 -671.685930 ... 0.825889 1.288798 6.359311 -2.564478 -2.033408 -8.763024 -8.968270 -9.715095 -2.393667 -4.623440
700168 20168 -204.006668 -404.623421 -266.981801 -310.144555 76.0 61.471915 22.424513 47.543739 -705.466515 ... 1.003719 0.931413 7.588703 -2.781509 -3.820230 -8.485840 -9.287819 -9.172349 -3.685424 -3.974061
700212 20212 -201.402359 -399.899319 -257.784101 -299.495533 76.0 60.809113 24.815046 60.198799 -670.265642 ... 0.710009 1.259152 5.545050 -2.753711 -3.074379 -9.317066 -7.355665 -8.175493 -4.717142 -3.300249
700276 20276 -205.320118 -413.030582 -267.203097 -306.812533 76.0 61.589629 15.407709 61.199536 -707.336586 ... 0.799255 0.998693 6.362230 -2.644398 -2.460090 -9.528058 -5.657994 -6.338014 -6.228574 -2.725754
700368 20368 -178.281697 -376.366721 -237.920124 -282.115608 76.0 62.458367 21.742777 60.658867 -678.643748 ... 0.892182 2.258068 8.675508 -2.931965 -1.060059 -9.247739 -11.683983 -10.090947 -6.260215 -1.603898
700420 20420 -183.816519 -382.630495 -237.802464 -285.334908 76.0 64.826625 22.343382 64.606152 -674.654894 ... 0.775517 1.243357 6.269449 -2.732949 -1.934275 -9.097793 -6.550405 -7.561553 -5.098176 -4.888200
700468 20468 -178.883857 -382.595805 -241.597731 -284.935977 76.0 59.233940 17.803061 58.321568 -677.582467 ... 1.175440 2.489691 9.451321 -3.242794 -2.487269 -9.405203 -8.207869 -11.912090 -2.094131 -6.141665
700480 20480 -182.098996 -383.596331 -240.888981 -279.891828 76.0 63.709435 19.934453 63.689453 -681.232302 ... 0.664851 1.057470 7.756744 -2.517139 -2.955325 -10.482131 -6.265160 -6.966603 -5.933934 -2.154303
700856 20856 -190.593595 -381.792578 -249.956885 -284.321823 76.0 64.882616 25.082910 59.854211 -629.475287 ... 0.643007 1.468188 6.761151 -3.347961 -3.165812 -8.298235 -8.384750 -7.930444 -8.327036 -2.489761
701040 21040 -192.501763 -396.777689 -256.917741 -297.257231 76.0 63.876424 18.262090 60.119692 -687.645318 ... 0.902084 1.573500 7.929596 -2.891285 -1.656422 -6.029935 -9.494978 -8.515965 -5.847921 -2.994475
701044 21044 -186.817382 -384.768943 -249.155596 -285.446440 76.0 62.912696 25.874808 62.743467 -704.606274 ... 0.765338 0.958489 6.955008 -2.730942 -2.162102 -6.211948 -8.597890 -8.595427 -5.751583 -4.693169
701120 21120 -205.672390 -405.665475 -265.144647 -303.513149 76.0 59.118626 18.761977 59.019030 -736.470916 ... 1.580592 1.107690 6.606527 -2.867801 -2.758255 -8.365926 -9.588418 -6.454264 -4.806064 -2.829348
701124 21124 -199.724862 -407.073971 -264.479602 -304.586851 76.0 62.061784 20.991611 61.964846 -731.888874 ... 1.204239 0.657606 6.559105 -3.050972 -4.354171 -8.348043 -8.444871 -7.364612 -3.183824 -3.659724
701182 21182 -203.031963 -409.457162 -263.489526 -305.137466 76.0 60.114533 25.969850 57.396877 -748.906300 ... 1.145960 1.643953 6.771216 -2.769939 -3.430384 -9.706465 -8.892401 -7.016079 1.900854 -3.852103
701186 21186 -209.133908 -418.951106 -270.329612 -313.703091 76.0 62.014634 25.631543 59.764704 -795.730168 ... 0.813192 0.650584 5.075778 -2.723255 -4.000245 -7.756103 -8.994198 -5.593929 -0.685517 -3.082913
701190 21190 -206.298143 -414.647769 -262.622324 -305.999107 76.0 63.376093 22.426479 61.111409 -706.696457 ... 0.782928 1.787070 6.482941 -2.745467 -2.380926 -7.192482 -8.157692 -8.402699 -3.874107 -2.416835
701276 21276 -199.321702 -404.268693 -259.845269 -303.878295 76.0 62.883368 13.898133 62.723456 -688.334453 ... 0.648381 2.660175 8.138812 -3.013106 -1.382305 -7.085366 -7.674150 -9.222306 -8.643840 -4.594032
701296 21296 -179.347609 -383.243626 -238.575135 -280.384450 76.0 64.165014 20.017145 63.686432 -721.606750 ... 0.784921 1.679485 6.799706 -3.006630 -1.846675 -9.927289 -5.851953 -8.893977 -9.136661 -6.239752
701368 21368 -192.458934 -392.447008 -247.879018 -289.635008 76.0 61.886092 17.251761 61.447822 -683.297323 ... 0.654819 1.696571 7.362176 -2.704251 -0.990646 -10.015917 -4.681644 -8.239166 -5.716358 -4.997329
701372 21372 -200.195008 -397.619030 -255.569261 -300.036854 76.0 63.789770 19.492147 62.679185 -659.478752 ... 0.705595 1.343419 7.306642 -2.573645 -2.939448 -9.694644 -3.890476 -6.369296 -5.974685 -0.938720
701476 21476 -201.866091 -393.521296 -263.739594 -305.039912 76.0 61.263742 14.333677 60.656736 -699.154275 ... 0.667946 0.943300 5.665992 -2.986017 -1.733400 -7.803968 -7.067322 -7.863725 -8.757457 -2.709796
701536 21536 -199.942152 -389.249038 -255.400849 -294.693822 76.0 63.728507 21.903112 62.615284 -700.473678 ... 1.063016 0.827648 6.030357 -2.718377 -1.874737 -8.485858 -9.477464 -8.208474 -6.441917 -4.083910
701732 21732 -183.159453 -386.190922 -235.676824 -279.781222 76.0 62.736953 25.320034 62.305945 -717.663661 ... 0.759227 1.514345 5.729742 -2.773871 0.626748 -9.051280 -9.519281 -9.054574 -6.101329 -5.240148
701744 21744 -181.221021 -377.463607 -237.919629 -281.416346 76.0 61.607309 24.374316 59.861844 -681.319335 ... 1.035286 1.554074 7.615217 -2.945745 -2.379840 -5.846920 -6.168532 -10.228673 -6.082994 -6.736689
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
1368073 688073 -185.566725 -433.548999 -249.879598 -307.708963 58.0 63.557769 26.553924 5.229743 -724.999601 ... 0.755565 1.757790 8.589588 -2.780659 -3.636463 -9.032954 -3.538948 -7.427103 -7.288845 -2.969545
1368149 688149 -174.210903 -434.951971 -238.312441 -300.856227 58.0 58.979148 26.441338 24.012457 -728.586715 ... 1.032995 0.899696 6.416219 -3.131277 2.143593 -8.866949 -4.497864 -10.766226 -8.539579 -5.671882
1368217 688217 -184.901362 -415.909713 -250.051629 -299.849268 58.0 60.818516 31.461736 23.315544 -757.815327 ... 0.864376 1.608958 8.831331 -2.721330 -1.497604 -7.684517 -1.215743 -11.005548 -10.589483 -3.704199
1368221 688221 -182.385335 -416.747796 -244.370078 -299.504787 58.0 59.587487 27.152610 19.635615 -712.058941 ... 0.721974 1.263238 7.328826 -2.564413 -0.377317 -8.762928 -3.326583 -9.949359 -9.546802 -5.798570
1368245 688245 -177.887323 -428.014053 -244.788796 -302.143592 58.0 59.265955 25.231700 -6.671719 -732.918851 ... 0.845738 1.517929 8.651643 -2.616635 -0.433013 -9.111535 -3.449159 -10.857177 -7.044298 -5.581970
1368285 688285 -184.210201 -430.548018 -250.086784 -305.998335 58.0 60.640554 26.592739 -5.221510 -727.315327 ... 0.794170 0.935052 6.529880 -2.665478 1.725538 -8.744802 -5.221135 -10.853723 -8.537626 -6.591871
1368325 688325 -180.278907 -417.338236 -244.706023 -300.526281 58.0 61.095038 13.585796 -19.009305 -655.934411 ... 1.283974 0.831167 5.932357 -3.074031 0.309547 -6.813591 -3.404757 -10.631560 -12.007895 -6.107439
1368361 688361 -183.606638 -415.098958 -244.664187 -300.696670 58.0 60.770273 27.241040 -21.828712 -747.726212 ... 0.869720 1.079696 6.470778 -2.783935 -1.973842 -8.395565 -3.589856 -10.334181 -10.820362 -5.422851
1368365 688365 -170.485342 -410.446007 -235.935563 -290.030268 58.0 58.441573 25.915303 -25.488909 -704.633895 ... 0.596922 1.227126 6.685990 -2.924974 -2.254350 -10.311079 -3.971000 -9.888635 -10.048325 -4.535247
1368405 688405 -171.017655 -417.268400 -233.666533 -291.802412 58.0 59.227292 24.564113 5.064778 -722.212197 ... 1.072983 1.198726 7.022781 -2.654217 -2.779565 -9.138782 -6.440966 -9.872572 -5.586225 -4.953839
1368421 688421 -174.129100 -417.718375 -237.096229 -294.843969 58.0 61.994997 26.401146 10.573494 -721.641583 ... 0.973994 1.347110 6.480872 -2.809157 2.713803 -6.655543 -5.198070 -10.890147 -8.842316 -5.834637
1368746 688746 -179.121831 -417.353552 -243.942584 -301.340221 58.0 63.485361 25.888623 50.526942 -725.928732 ... 1.095397 2.815720 10.716150 -2.990654 0.340139 -10.486181 -3.211063 -9.472440 -8.844071 -3.137275
1368806 688806 -180.626124 -436.256822 -251.007931 -312.815521 58.0 62.615036 24.593743 58.388955 -703.422838 ... 0.852610 1.152187 7.960150 -2.995607 -0.275691 -8.259458 -4.141764 -9.007082 -6.944422 -3.195684
1368870 688870 -180.501256 -423.224316 -243.600950 -300.038990 58.0 58.627532 23.814134 50.773716 -756.535330 ... 0.668297 2.118517 7.982507 -3.192017 1.695633 -11.731090 -5.610044 -10.959165 -7.712080 -5.165576
1369010 689010 -179.487590 -424.101373 -243.873436 -300.164283 58.0 61.568734 28.438961 45.158228 -726.176637 ... 0.738207 1.361105 7.062270 -2.812035 -3.532588 -9.255291 -4.783310 -10.607113 -4.007548 -5.726850
1369030 689030 -168.919052 -419.221522 -236.213064 -298.556609 58.0 58.456522 27.621790 47.294456 -684.129366 ... 1.111318 1.476957 6.769122 -2.655099 -1.873088 -8.552198 -4.006576 -10.618220 -7.687263 -4.993024
1369102 689102 -168.319223 -417.837647 -231.479184 -290.313380 58.0 58.625259 25.475529 43.501368 -726.895572 ... 1.016458 1.044342 6.975522 -2.766631 0.876065 -6.886716 -4.719075 -10.103571 -6.066721 -6.437804
1369126 689126 -179.690809 -430.921987 -244.620814 -301.194331 58.0 62.324539 25.954151 50.169640 -755.364416 ... 0.662318 0.795600 7.451465 -3.112160 -1.584609 -9.603307 -5.175364 -11.635361 -7.566449 -7.385186
1369198 689198 -178.243939 -419.998665 -235.984567 -290.399571 58.0 58.508104 25.556783 55.111334 -708.657623 ... 1.208107 0.556888 6.169614 -2.737007 2.171651 -8.647830 -6.081449 -9.561767 -5.479686 -7.763263
1369202 689202 -178.609499 -416.061316 -238.913211 -296.585357 58.0 60.326950 27.636576 51.779129 -736.783370 ... 0.665393 0.914440 4.989163 -2.814465 1.763269 -7.132625 -6.544062 -11.031563 -5.858157 -6.581699
1369222 689222 -183.421291 -425.355266 -242.632490 -299.268460 58.0 58.858789 27.640180 46.522631 -725.897622 ... 0.969568 0.846451 5.765233 -3.026683 0.170344 -8.301813 -4.811021 -10.879702 -9.272607 -6.392238
1369234 689234 -173.444009 -405.020399 -229.325042 -285.854424 58.0 60.780064 22.240237 56.533185 -707.024586 ... 0.529463 1.487205 7.263872 -2.837328 0.400207 -9.312972 -5.214193 -9.412695 -9.562791 -4.147527
1369246 689246 -174.352874 -404.882857 -232.704731 -290.039086 58.0 62.934132 26.216408 58.354414 -733.829222 ... 0.716470 0.913194 5.907705 -2.781841 -2.318053 -8.904111 -5.395860 -9.661883 -5.398953 -6.435435
1369258 689258 -176.231988 -421.447433 -243.492460 -300.240432 58.0 64.532863 29.289282 62.555680 -699.842766 ... 0.496093 1.300823 7.333361 -2.726122 -1.019796 -8.370213 -3.770426 -9.113951 -10.644287 -5.102402
1369294 689294 -187.798702 -428.230117 -252.781598 -307.875285 58.0 62.205866 28.057959 62.151074 -726.502278 ... 0.943809 1.396559 7.720693 -3.483403 -0.722411 -10.138624 -5.764216 -11.309334 -7.106441 -5.359867
1369394 689394 -175.419493 -424.431742 -239.308863 -296.764866 58.0 61.161116 22.387550 55.973068 -736.495045 ... 1.067481 0.725100 6.398078 -3.135888 -1.018849 -8.495286 -5.848612 -10.507679 -6.936360 -5.979812
1369817 689817 -172.771369 -414.370752 -235.308289 -291.953754 58.0 58.503822 23.447693 41.713169 -673.284846 ... 0.898382 1.258251 8.202878 -3.271329 -2.309698 -7.667836 -3.859552 -9.670478 -6.067062 -3.775251
1369905 689905 -177.214453 -415.670048 -241.089175 -293.190364 58.0 61.558249 21.352841 29.267518 -729.847428 ... 0.882144 0.507857 5.510611 -2.573738 0.886495 -8.164106 -5.841094 -9.640226 -6.933722 -7.022550
1369949 689949 -182.867201 -425.713621 -243.044299 -301.830884 58.0 60.753187 24.211236 32.745059 -708.737646 ... 0.833724 1.567063 7.799867 -2.788074 0.158322 -10.072163 -2.016233 -9.945332 -10.334942 -4.894326
1369954 689954 -169.512144 -403.562528 -230.771951 -287.110965 58.0 58.385926 27.295161 58.019990 -665.754320 ... 0.785803 0.898672 5.095570 -2.982549 -0.893082 -7.931155 -3.882855 -11.553770 -12.181218 -5.930881

2516 rows × 50 columns


In [47]:
t373_narrow.to_csv("/Users/weilu/Research/data/t373_narrow.csv")

In [49]:
pd.read_csv("/Users/weilu/Research/data/t373_narrow.csv", index_col=0)


Out[49]:
level_0 AMH AMH-Go AMH_3H AMH_4H BiasTo DisReal Dis_h56 Distance Energy ... rg5 rg6 rg_all z_average z_h1 z_h2 z_h3 z_h4 z_h5 z_h6
690879 10879 -188.979138 -390.081625 -249.115825 -289.262546 84.0 63.661735 20.669687 17.378090 -701.147517 ... 0.650621 0.843067 4.545966 -3.066561 -1.748113 -6.430219 -8.190092 -9.252894 -8.895051 -6.098870
690899 10899 -183.186433 -392.944653 -248.231963 -290.903219 84.0 62.765665 20.238180 4.321019 -722.852166 ... 2.083610 1.751864 8.232831 -2.584027 -0.334311 -4.870930 -4.314226 -7.357321 -12.419326 -3.192265
690951 10951 -198.371330 -418.571828 -262.922682 -306.794288 84.0 63.962096 24.762010 2.996987 -701.801432 ... 1.135109 1.204688 6.678409 -3.242610 -3.586887 -8.136387 -6.533465 -8.381541 -7.687451 -5.183540
690963 10963 -203.890243 -410.824289 -263.026350 -303.628052 84.0 62.684794 26.680936 8.449340 -726.347395 ... 1.423125 1.197325 6.840901 -3.244232 -5.257919 -7.654789 -8.554059 -9.237917 -2.725016 -2.810763
690983 10983 -204.946719 -424.061741 -266.330756 -309.658773 84.0 64.637249 24.843682 23.029081 -695.724410 ... 1.021736 2.023428 8.815642 -3.377480 -4.444977 -7.599188 -7.986603 -8.800486 -7.926119 -5.178974
698563 18563 -200.476719 -406.283196 -254.381890 -298.644399 84.0 63.655067 21.874139 -20.290518 -743.007050 ... 0.734103 1.320845 6.492530 -3.407151 0.666020 -5.851761 -11.573996 -11.560990 -7.626134 -7.147509
700136 20136 -198.617280 -403.437657 -256.952363 -302.751807 76.0 62.154514 20.276552 57.604418 -671.685930 ... 0.825889 1.288798 6.359311 -2.564478 -2.033408 -8.763024 -8.968270 -9.715095 -2.393667 -4.623440
700168 20168 -204.006668 -404.623421 -266.981801 -310.144555 76.0 61.471915 22.424513 47.543739 -705.466515 ... 1.003719 0.931413 7.588703 -2.781509 -3.820230 -8.485840 -9.287819 -9.172349 -3.685424 -3.974061
700212 20212 -201.402359 -399.899319 -257.784101 -299.495533 76.0 60.809113 24.815046 60.198799 -670.265642 ... 0.710009 1.259152 5.545050 -2.753711 -3.074379 -9.317066 -7.355665 -8.175493 -4.717142 -3.300249
700276 20276 -205.320118 -413.030582 -267.203097 -306.812533 76.0 61.589629 15.407709 61.199536 -707.336586 ... 0.799255 0.998693 6.362230 -2.644398 -2.460090 -9.528058 -5.657994 -6.338014 -6.228574 -2.725754
700368 20368 -178.281697 -376.366721 -237.920124 -282.115608 76.0 62.458367 21.742777 60.658867 -678.643748 ... 0.892182 2.258068 8.675508 -2.931965 -1.060059 -9.247739 -11.683983 -10.090947 -6.260215 -1.603898
700420 20420 -183.816519 -382.630495 -237.802464 -285.334908 76.0 64.826625 22.343382 64.606152 -674.654894 ... 0.775517 1.243357 6.269449 -2.732949 -1.934275 -9.097793 -6.550405 -7.561553 -5.098176 -4.888200
700468 20468 -178.883857 -382.595805 -241.597731 -284.935977 76.0 59.233940 17.803061 58.321568 -677.582467 ... 1.175440 2.489691 9.451321 -3.242794 -2.487269 -9.405203 -8.207869 -11.912090 -2.094131 -6.141665
700480 20480 -182.098996 -383.596331 -240.888981 -279.891828 76.0 63.709435 19.934453 63.689453 -681.232302 ... 0.664851 1.057470 7.756744 -2.517139 -2.955325 -10.482131 -6.265160 -6.966603 -5.933934 -2.154303
700856 20856 -190.593595 -381.792578 -249.956885 -284.321823 76.0 64.882616 25.082910 59.854211 -629.475287 ... 0.643007 1.468188 6.761151 -3.347961 -3.165812 -8.298235 -8.384750 -7.930444 -8.327036 -2.489761
701040 21040 -192.501763 -396.777689 -256.917741 -297.257231 76.0 63.876424 18.262090 60.119692 -687.645318 ... 0.902084 1.573500 7.929596 -2.891285 -1.656422 -6.029935 -9.494978 -8.515965 -5.847921 -2.994475
701044 21044 -186.817382 -384.768943 -249.155596 -285.446440 76.0 62.912696 25.874808 62.743467 -704.606274 ... 0.765338 0.958489 6.955008 -2.730942 -2.162102 -6.211948 -8.597890 -8.595427 -5.751583 -4.693169
701120 21120 -205.672390 -405.665475 -265.144647 -303.513149 76.0 59.118626 18.761977 59.019030 -736.470916 ... 1.580592 1.107690 6.606527 -2.867801 -2.758255 -8.365926 -9.588418 -6.454264 -4.806064 -2.829348
701124 21124 -199.724862 -407.073971 -264.479602 -304.586851 76.0 62.061784 20.991611 61.964846 -731.888874 ... 1.204239 0.657606 6.559105 -3.050972 -4.354171 -8.348043 -8.444871 -7.364612 -3.183824 -3.659724
701182 21182 -203.031963 -409.457162 -263.489526 -305.137466 76.0 60.114533 25.969850 57.396877 -748.906300 ... 1.145960 1.643953 6.771216 -2.769939 -3.430384 -9.706465 -8.892401 -7.016079 1.900854 -3.852103
701186 21186 -209.133908 -418.951106 -270.329612 -313.703091 76.0 62.014634 25.631543 59.764704 -795.730168 ... 0.813192 0.650584 5.075778 -2.723255 -4.000245 -7.756103 -8.994198 -5.593929 -0.685517 -3.082913
701190 21190 -206.298143 -414.647769 -262.622324 -305.999107 76.0 63.376093 22.426479 61.111409 -706.696457 ... 0.782928 1.787070 6.482941 -2.745467 -2.380926 -7.192482 -8.157692 -8.402699 -3.874107 -2.416835
701276 21276 -199.321702 -404.268693 -259.845269 -303.878295 76.0 62.883368 13.898133 62.723456 -688.334453 ... 0.648381 2.660175 8.138812 -3.013106 -1.382305 -7.085366 -7.674150 -9.222306 -8.643840 -4.594032
701296 21296 -179.347609 -383.243626 -238.575135 -280.384450 76.0 64.165014 20.017145 63.686432 -721.606750 ... 0.784921 1.679485 6.799706 -3.006630 -1.846675 -9.927289 -5.851953 -8.893977 -9.136661 -6.239752
701368 21368 -192.458934 -392.447008 -247.879018 -289.635008 76.0 61.886092 17.251761 61.447822 -683.297323 ... 0.654819 1.696571 7.362176 -2.704251 -0.990646 -10.015917 -4.681644 -8.239166 -5.716358 -4.997329
701372 21372 -200.195008 -397.619030 -255.569261 -300.036854 76.0 63.789770 19.492147 62.679185 -659.478752 ... 0.705595 1.343419 7.306642 -2.573645 -2.939448 -9.694644 -3.890476 -6.369296 -5.974685 -0.938720
701476 21476 -201.866091 -393.521296 -263.739594 -305.039912 76.0 61.263742 14.333677 60.656736 -699.154275 ... 0.667946 0.943300 5.665992 -2.986017 -1.733400 -7.803968 -7.067322 -7.863725 -8.757457 -2.709796
701536 21536 -199.942152 -389.249038 -255.400849 -294.693822 76.0 63.728507 21.903112 62.615284 -700.473678 ... 1.063016 0.827648 6.030357 -2.718377 -1.874737 -8.485858 -9.477464 -8.208474 -6.441917 -4.083910
701732 21732 -183.159453 -386.190922 -235.676824 -279.781222 76.0 62.736953 25.320034 62.305945 -717.663661 ... 0.759227 1.514345 5.729742 -2.773871 0.626748 -9.051280 -9.519281 -9.054574 -6.101329 -5.240148
701744 21744 -181.221021 -377.463607 -237.919629 -281.416346 76.0 61.607309 24.374316 59.861844 -681.319335 ... 1.035286 1.554074 7.615217 -2.945745 -2.379840 -5.846920 -6.168532 -10.228673 -6.082994 -6.736689
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
1368073 688073 -185.566725 -433.548999 -249.879598 -307.708963 58.0 63.557769 26.553924 5.229743 -724.999601 ... 0.755565 1.757790 8.589588 -2.780659 -3.636463 -9.032954 -3.538948 -7.427103 -7.288845 -2.969545
1368149 688149 -174.210903 -434.951971 -238.312441 -300.856227 58.0 58.979148 26.441338 24.012457 -728.586715 ... 1.032995 0.899696 6.416219 -3.131277 2.143593 -8.866949 -4.497864 -10.766226 -8.539579 -5.671882
1368217 688217 -184.901362 -415.909713 -250.051629 -299.849268 58.0 60.818516 31.461736 23.315544 -757.815327 ... 0.864376 1.608958 8.831331 -2.721330 -1.497604 -7.684517 -1.215743 -11.005548 -10.589483 -3.704199
1368221 688221 -182.385335 -416.747796 -244.370078 -299.504787 58.0 59.587487 27.152610 19.635615 -712.058941 ... 0.721974 1.263238 7.328826 -2.564413 -0.377317 -8.762928 -3.326583 -9.949359 -9.546802 -5.798570
1368245 688245 -177.887323 -428.014053 -244.788796 -302.143592 58.0 59.265955 25.231700 -6.671719 -732.918851 ... 0.845738 1.517929 8.651643 -2.616635 -0.433013 -9.111535 -3.449159 -10.857177 -7.044298 -5.581970
1368285 688285 -184.210201 -430.548018 -250.086784 -305.998335 58.0 60.640554 26.592739 -5.221510 -727.315327 ... 0.794170 0.935052 6.529880 -2.665478 1.725538 -8.744802 -5.221135 -10.853723 -8.537626 -6.591871
1368325 688325 -180.278907 -417.338236 -244.706023 -300.526281 58.0 61.095038 13.585796 -19.009305 -655.934411 ... 1.283974 0.831167 5.932357 -3.074031 0.309547 -6.813591 -3.404757 -10.631560 -12.007895 -6.107439
1368361 688361 -183.606638 -415.098958 -244.664187 -300.696670 58.0 60.770273 27.241040 -21.828712 -747.726212 ... 0.869720 1.079696 6.470778 -2.783935 -1.973842 -8.395565 -3.589856 -10.334181 -10.820362 -5.422851
1368365 688365 -170.485342 -410.446007 -235.935563 -290.030268 58.0 58.441573 25.915303 -25.488909 -704.633895 ... 0.596922 1.227126 6.685990 -2.924974 -2.254350 -10.311079 -3.971000 -9.888635 -10.048325 -4.535247
1368405 688405 -171.017655 -417.268400 -233.666533 -291.802412 58.0 59.227292 24.564113 5.064778 -722.212197 ... 1.072983 1.198726 7.022781 -2.654217 -2.779565 -9.138782 -6.440966 -9.872572 -5.586225 -4.953839
1368421 688421 -174.129100 -417.718375 -237.096229 -294.843969 58.0 61.994997 26.401146 10.573494 -721.641583 ... 0.973994 1.347110 6.480872 -2.809157 2.713803 -6.655543 -5.198070 -10.890147 -8.842316 -5.834637
1368746 688746 -179.121831 -417.353552 -243.942584 -301.340221 58.0 63.485361 25.888623 50.526942 -725.928732 ... 1.095397 2.815720 10.716150 -2.990654 0.340139 -10.486181 -3.211063 -9.472440 -8.844071 -3.137275
1368806 688806 -180.626124 -436.256822 -251.007931 -312.815521 58.0 62.615036 24.593743 58.388955 -703.422838 ... 0.852610 1.152187 7.960150 -2.995607 -0.275691 -8.259458 -4.141764 -9.007082 -6.944422 -3.195684
1368870 688870 -180.501256 -423.224316 -243.600950 -300.038990 58.0 58.627532 23.814134 50.773716 -756.535330 ... 0.668297 2.118517 7.982507 -3.192017 1.695633 -11.731090 -5.610044 -10.959165 -7.712080 -5.165576
1369010 689010 -179.487590 -424.101373 -243.873436 -300.164283 58.0 61.568734 28.438961 45.158228 -726.176637 ... 0.738207 1.361105 7.062270 -2.812035 -3.532588 -9.255291 -4.783310 -10.607113 -4.007548 -5.726850
1369030 689030 -168.919052 -419.221522 -236.213064 -298.556609 58.0 58.456522 27.621790 47.294456 -684.129366 ... 1.111318 1.476957 6.769122 -2.655099 -1.873088 -8.552198 -4.006576 -10.618220 -7.687263 -4.993024
1369102 689102 -168.319223 -417.837647 -231.479184 -290.313380 58.0 58.625259 25.475529 43.501368 -726.895572 ... 1.016458 1.044342 6.975522 -2.766631 0.876065 -6.886716 -4.719075 -10.103571 -6.066721 -6.437804
1369126 689126 -179.690809 -430.921987 -244.620814 -301.194331 58.0 62.324539 25.954151 50.169640 -755.364416 ... 0.662318 0.795600 7.451465 -3.112160 -1.584609 -9.603307 -5.175364 -11.635361 -7.566449 -7.385186
1369198 689198 -178.243939 -419.998665 -235.984567 -290.399571 58.0 58.508104 25.556783 55.111334 -708.657623 ... 1.208107 0.556888 6.169614 -2.737007 2.171651 -8.647830 -6.081449 -9.561767 -5.479686 -7.763263
1369202 689202 -178.609499 -416.061316 -238.913211 -296.585357 58.0 60.326950 27.636576 51.779129 -736.783370 ... 0.665393 0.914440 4.989163 -2.814465 1.763269 -7.132625 -6.544062 -11.031563 -5.858157 -6.581699
1369222 689222 -183.421291 -425.355266 -242.632490 -299.268460 58.0 58.858789 27.640180 46.522631 -725.897622 ... 0.969568 0.846451 5.765233 -3.026683 0.170344 -8.301813 -4.811021 -10.879702 -9.272607 -6.392238
1369234 689234 -173.444009 -405.020399 -229.325042 -285.854424 58.0 60.780064 22.240237 56.533185 -707.024586 ... 0.529463 1.487205 7.263872 -2.837328 0.400207 -9.312972 -5.214193 -9.412695 -9.562791 -4.147527
1369246 689246 -174.352874 -404.882857 -232.704731 -290.039086 58.0 62.934132 26.216408 58.354414 -733.829222 ... 0.716470 0.913194 5.907705 -2.781841 -2.318053 -8.904111 -5.395860 -9.661883 -5.398953 -6.435435
1369258 689258 -176.231988 -421.447433 -243.492460 -300.240432 58.0 64.532863 29.289282 62.555680 -699.842766 ... 0.496093 1.300823 7.333361 -2.726122 -1.019796 -8.370213 -3.770426 -9.113951 -10.644287 -5.102402
1369294 689294 -187.798702 -428.230117 -252.781598 -307.875285 58.0 62.205866 28.057959 62.151074 -726.502278 ... 0.943809 1.396559 7.720693 -3.483403 -0.722411 -10.138624 -5.764216 -11.309334 -7.106441 -5.359867
1369394 689394 -175.419493 -424.431742 -239.308863 -296.764866 58.0 61.161116 22.387550 55.973068 -736.495045 ... 1.067481 0.725100 6.398078 -3.135888 -1.018849 -8.495286 -5.848612 -10.507679 -6.936360 -5.979812
1369817 689817 -172.771369 -414.370752 -235.308289 -291.953754 58.0 58.503822 23.447693 41.713169 -673.284846 ... 0.898382 1.258251 8.202878 -3.271329 -2.309698 -7.667836 -3.859552 -9.670478 -6.067062 -3.775251
1369905 689905 -177.214453 -415.670048 -241.089175 -293.190364 58.0 61.558249 21.352841 29.267518 -729.847428 ... 0.882144 0.507857 5.510611 -2.573738 0.886495 -8.164106 -5.841094 -9.640226 -6.933722 -7.022550
1369949 689949 -182.867201 -425.713621 -243.044299 -301.830884 58.0 60.753187 24.211236 32.745059 -708.737646 ... 0.833724 1.567063 7.799867 -2.788074 0.158322 -10.072163 -2.016233 -9.945332 -10.334942 -4.894326
1369954 689954 -169.512144 -403.562528 -230.771951 -287.110965 58.0 58.385926 27.295161 58.019990 -665.754320 ... 0.785803 0.898672 5.095570 -2.982549 -0.893082 -7.931155 -3.882855 -11.553770 -12.181218 -5.930881

2516 rows × 50 columns


In [50]:
t373_super_narrow = data.query("TempT == 373 and DisReal > 60 \
           and DisReal < 63 and z_average < -2.5 and z_average > -3.5")

In [ ]:


In [62]:
t373_super_narrow.drop("level_0", axis=1).reset_index(drop=True).reset_index()


Out[62]:
level_0 AMH AMH-Go AMH_3H AMH_4H BiasTo DisReal Dis_h56 Distance Energy ... rg5 rg6 rg_all z_average z_h1 z_h2 z_h3 z_h4 z_h5 z_h6
0 0 -183.186433 -392.944653 -248.231963 -290.903219 84.0 62.765665 20.238180 4.321019 -722.852166 ... 2.083610 1.751864 8.232831 -2.584027 -0.334311 -4.870930 -4.314226 -7.357321 -12.419326 -3.192265
1 1 -203.890243 -410.824289 -263.026350 -303.628052 84.0 62.684794 26.680936 8.449340 -726.347395 ... 1.423125 1.197325 6.840901 -3.244232 -5.257919 -7.654789 -8.554059 -9.237917 -2.725016 -2.810763
2 2 -198.617280 -403.437657 -256.952363 -302.751807 76.0 62.154514 20.276552 57.604418 -671.685930 ... 0.825889 1.288798 6.359311 -2.564478 -2.033408 -8.763024 -8.968270 -9.715095 -2.393667 -4.623440
3 3 -204.006668 -404.623421 -266.981801 -310.144555 76.0 61.471915 22.424513 47.543739 -705.466515 ... 1.003719 0.931413 7.588703 -2.781509 -3.820230 -8.485840 -9.287819 -9.172349 -3.685424 -3.974061
4 4 -201.402359 -399.899319 -257.784101 -299.495533 76.0 60.809113 24.815046 60.198799 -670.265642 ... 0.710009 1.259152 5.545050 -2.753711 -3.074379 -9.317066 -7.355665 -8.175493 -4.717142 -3.300249
5 5 -205.320118 -413.030582 -267.203097 -306.812533 76.0 61.589629 15.407709 61.199536 -707.336586 ... 0.799255 0.998693 6.362230 -2.644398 -2.460090 -9.528058 -5.657994 -6.338014 -6.228574 -2.725754
6 6 -178.281697 -376.366721 -237.920124 -282.115608 76.0 62.458367 21.742777 60.658867 -678.643748 ... 0.892182 2.258068 8.675508 -2.931965 -1.060059 -9.247739 -11.683983 -10.090947 -6.260215 -1.603898
7 7 -186.817382 -384.768943 -249.155596 -285.446440 76.0 62.912696 25.874808 62.743467 -704.606274 ... 0.765338 0.958489 6.955008 -2.730942 -2.162102 -6.211948 -8.597890 -8.595427 -5.751583 -4.693169
8 8 -199.724862 -407.073971 -264.479602 -304.586851 76.0 62.061784 20.991611 61.964846 -731.888874 ... 1.204239 0.657606 6.559105 -3.050972 -4.354171 -8.348043 -8.444871 -7.364612 -3.183824 -3.659724
9 9 -203.031963 -409.457162 -263.489526 -305.137466 76.0 60.114533 25.969850 57.396877 -748.906300 ... 1.145960 1.643953 6.771216 -2.769939 -3.430384 -9.706465 -8.892401 -7.016079 1.900854 -3.852103
10 10 -209.133908 -418.951106 -270.329612 -313.703091 76.0 62.014634 25.631543 59.764704 -795.730168 ... 0.813192 0.650584 5.075778 -2.723255 -4.000245 -7.756103 -8.994198 -5.593929 -0.685517 -3.082913
11 11 -199.321702 -404.268693 -259.845269 -303.878295 76.0 62.883368 13.898133 62.723456 -688.334453 ... 0.648381 2.660175 8.138812 -3.013106 -1.382305 -7.085366 -7.674150 -9.222306 -8.643840 -4.594032
12 12 -192.458934 -392.447008 -247.879018 -289.635008 76.0 61.886092 17.251761 61.447822 -683.297323 ... 0.654819 1.696571 7.362176 -2.704251 -0.990646 -10.015917 -4.681644 -8.239166 -5.716358 -4.997329
13 13 -201.866091 -393.521296 -263.739594 -305.039912 76.0 61.263742 14.333677 60.656736 -699.154275 ... 0.667946 0.943300 5.665992 -2.986017 -1.733400 -7.803968 -7.067322 -7.863725 -8.757457 -2.709796
14 14 -183.159453 -386.190922 -235.676824 -279.781222 76.0 62.736953 25.320034 62.305945 -717.663661 ... 0.759227 1.514345 5.729742 -2.773871 0.626748 -9.051280 -9.519281 -9.054574 -6.101329 -5.240148
15 15 -181.221021 -377.463607 -237.919629 -281.416346 76.0 61.607309 24.374316 59.861844 -681.319335 ... 1.035286 1.554074 7.615217 -2.945745 -2.379840 -5.846920 -6.168532 -10.228673 -6.082994 -6.736689
16 16 -189.710193 -390.173220 -253.045609 -295.121123 76.0 61.631306 24.044134 60.144295 -679.540192 ... 0.868744 0.511458 5.450385 -2.739204 -1.619467 -7.916267 -6.572121 -8.527189 -6.398939 -7.221901
17 17 -196.183966 -406.138688 -258.857467 -299.875884 76.0 61.946134 25.504089 61.291518 -719.405160 ... 1.094599 1.312474 6.926905 -2.650496 -4.341284 -10.439736 -3.986843 -8.784379 -4.672728 -3.861032
18 18 -182.123524 -382.441557 -234.983425 -275.899654 76.0 61.295090 19.887148 52.833097 -699.013294 ... 0.950484 1.048522 6.631513 -3.259112 -5.539501 -9.242057 -6.369288 -7.044428 -9.616248 -2.159119
19 19 -189.169792 -385.324471 -248.156855 -290.348566 76.0 60.681187 18.173458 46.942436 -696.476873 ... 0.722515 1.190232 5.971119 -2.946683 -1.995478 -8.974955 -8.833224 -7.349788 -6.732135 -1.237385
20 20 -190.220942 -402.813799 -249.167746 -295.647170 76.0 62.378067 21.391853 50.484732 -723.196455 ... 0.587846 1.598440 7.352005 -3.249223 -2.029978 -6.738988 -7.185882 -10.995796 -8.571060 -4.540602
21 21 -196.827300 -393.983121 -252.648082 -293.313550 76.0 61.762469 15.618466 54.818228 -690.801136 ... 1.028693 0.547849 5.459401 -3.155704 -1.160795 -9.622743 -14.384605 -6.285290 -4.718719 -5.475780
22 22 -208.609130 -418.099838 -268.313641 -310.499139 76.0 62.221925 13.688927 32.159859 -695.677421 ... 1.050160 1.105813 9.495926 -3.234484 -0.733311 -6.274690 -14.411684 -7.791673 -4.620366 -5.713177
23 23 -198.103094 -408.174967 -256.059433 -299.686255 76.0 62.369909 18.123410 20.131948 -704.187926 ... 0.809389 1.222921 7.130008 -3.492088 -2.068909 -9.216425 -13.613160 -6.471469 -8.147841 -2.197857
24 24 -199.025804 -412.025040 -267.941874 -313.322494 76.0 61.496671 16.571651 53.412272 -716.043453 ... 1.195463 1.603197 8.203108 -3.104469 -0.353114 -7.191907 -7.386359 -7.987864 -4.551257 -4.629477
25 25 -198.890466 -411.358571 -264.723736 -311.956272 76.0 62.893771 20.045472 52.172994 -736.877658 ... 1.401528 1.641499 8.840413 -2.828425 -0.476468 -6.604661 -6.219031 -8.340865 -6.554260 -4.760456
26 26 -196.460851 -409.923375 -258.775882 -303.151050 76.0 60.267215 19.216380 58.037050 -686.751107 ... 0.594485 2.094251 8.660148 -2.666021 -0.335794 -7.400066 -8.402643 -8.710075 -6.599744 -3.963140
27 27 -198.836642 -411.949954 -258.754856 -305.546324 76.0 62.875795 20.662846 54.749443 -728.688882 ... 1.017907 0.857974 6.806332 -2.560067 -3.095991 -8.054354 -7.151503 -8.151705 -7.082207 -4.111964
28 28 -204.007129 -406.618679 -266.916796 -309.218730 76.0 61.811020 13.226111 60.401425 -720.061194 ... 0.640460 2.199162 7.204001 -2.834601 -1.556298 -7.101813 -7.721146 -10.879579 -5.932843 -5.196109
29 29 -209.344681 -421.081069 -271.033092 -316.628754 76.0 61.323506 23.279207 60.654290 -740.600128 ... 1.127948 1.217919 6.943568 -2.799197 -1.283451 -7.306029 -6.927896 -6.911088 -8.391967 -3.226527
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
1093 1093 -184.760676 -433.421460 -250.244087 -307.324510 58.0 61.143547 29.842580 -59.153360 -737.279400 ... 1.219156 1.293550 7.596216 -2.942726 -0.301577 -8.953073 -7.268255 -10.085113 -5.382739 -5.757708
1094 1094 -181.492528 -435.586403 -247.407422 -301.582418 58.0 61.185343 26.234047 -59.902500 -747.753484 ... 0.863806 1.043906 6.171285 -2.915923 0.412182 -7.048880 -1.481121 -8.753144 -3.807632 -4.445559
1095 1095 -168.871092 -401.958994 -229.284775 -285.030716 58.0 60.773128 27.196709 -57.927847 -659.346864 ... 1.056415 1.290780 7.399700 -3.423234 -0.183852 -7.646559 -3.530374 -11.233148 -5.274206 -5.397506
1096 1096 -175.387689 -431.541112 -242.593485 -297.348325 58.0 60.651985 25.353754 -60.243063 -710.872921 ... 0.660203 0.883399 6.025683 -2.585358 -0.732647 -9.200080 -2.887053 -9.827359 -7.969604 -6.300027
1097 1097 -177.538856 -425.397648 -243.474277 -302.957084 58.0 61.645265 26.388548 -57.118073 -751.507384 ... 0.493353 2.460976 9.731254 -3.008314 -2.196018 -8.762613 -3.653016 -11.188637 -9.454501 -5.967728
1098 1098 -175.567425 -419.779282 -239.007941 -296.289508 58.0 61.752177 26.108806 -61.664453 -685.229653 ... 0.610189 1.963472 7.785783 -2.693017 0.063740 -9.783874 -5.059955 -11.200874 -10.065927 -5.419370
1099 1099 -179.241297 -419.828968 -244.453269 -303.525258 58.0 60.501737 25.280646 -60.367577 -721.667814 ... 0.687493 1.479398 6.950195 -3.043595 0.102693 -8.475389 -5.807048 -10.739181 -6.397000 -5.524311
1100 1100 -172.550666 -424.677719 -243.213490 -300.934550 58.0 61.189026 17.828335 -60.392959 -695.842709 ... 0.640597 0.947439 6.020941 -2.981356 -1.232599 -7.708722 -4.713023 -10.224133 -7.217064 -4.916977
1101 1101 -177.908734 -438.564823 -252.099967 -309.614236 58.0 60.591313 22.127825 -41.375129 -728.599891 ... 0.758276 1.070956 7.091750 -2.992002 -0.476688 -7.594556 -3.137517 -9.397180 -7.182323 -5.088784
1102 1102 -173.446097 -424.078364 -244.292748 -300.872660 58.0 61.447386 27.762346 -41.579726 -719.799576 ... 0.800377 0.948902 6.409108 -3.022322 -1.638135 -9.348867 -3.070657 -8.676364 -3.725813 -4.943685
1103 1103 -174.215972 -417.823656 -238.510357 -298.892580 58.0 60.967074 24.897062 -39.798365 -708.928219 ... 0.955982 0.923271 6.630029 -2.766361 1.893512 -7.082432 -9.318894 -10.282398 -6.221680 -7.311380
1104 1104 -181.784491 -425.343160 -241.481971 -300.038460 58.0 62.424577 23.195869 -34.336025 -721.036621 ... 0.649406 1.374586 6.979247 -2.701677 0.177224 -10.138798 -3.573239 -9.477800 -7.366045 -4.789640
1105 1105 -185.074206 -442.272037 -250.392709 -309.850709 58.0 61.084242 24.844553 -40.547886 -757.091916 ... 0.497966 1.306762 6.545507 -2.633366 -0.002489 -9.758205 -3.094255 -9.765270 -10.850674 -4.410178
1106 1106 -177.834585 -422.896765 -245.012041 -302.271225 58.0 61.348253 25.255532 6.533869 -737.635914 ... 0.706337 1.100097 6.864341 -2.988014 -1.547673 -8.128304 -5.047194 -9.853299 -6.623898 -5.873465
1107 1107 -172.394764 -417.283228 -233.944735 -291.373989 58.0 62.920589 23.912972 13.444316 -756.178394 ... 0.534341 1.608464 6.854060 -2.963748 -2.564418 -9.165576 -4.261538 -10.649184 -10.629487 -5.514478
1108 1108 -184.901362 -415.909713 -250.051629 -299.849268 58.0 60.818516 31.461736 23.315544 -757.815327 ... 0.864376 1.608958 8.831331 -2.721330 -1.497604 -7.684517 -1.215743 -11.005548 -10.589483 -3.704199
1109 1109 -184.210201 -430.548018 -250.086784 -305.998335 58.0 60.640554 26.592739 -5.221510 -727.315327 ... 0.794170 0.935052 6.529880 -2.665478 1.725538 -8.744802 -5.221135 -10.853723 -8.537626 -6.591871
1110 1110 -180.278907 -417.338236 -244.706023 -300.526281 58.0 61.095038 13.585796 -19.009305 -655.934411 ... 1.283974 0.831167 5.932357 -3.074031 0.309547 -6.813591 -3.404757 -10.631560 -12.007895 -6.107439
1111 1111 -183.606638 -415.098958 -244.664187 -300.696670 58.0 60.770273 27.241040 -21.828712 -747.726212 ... 0.869720 1.079696 6.470778 -2.783935 -1.973842 -8.395565 -3.589856 -10.334181 -10.820362 -5.422851
1112 1112 -174.129100 -417.718375 -237.096229 -294.843969 58.0 61.994997 26.401146 10.573494 -721.641583 ... 0.973994 1.347110 6.480872 -2.809157 2.713803 -6.655543 -5.198070 -10.890147 -8.842316 -5.834637
1113 1113 -180.626124 -436.256822 -251.007931 -312.815521 58.0 62.615036 24.593743 58.388955 -703.422838 ... 0.852610 1.152187 7.960150 -2.995607 -0.275691 -8.259458 -4.141764 -9.007082 -6.944422 -3.195684
1114 1114 -179.487590 -424.101373 -243.873436 -300.164283 58.0 61.568734 28.438961 45.158228 -726.176637 ... 0.738207 1.361105 7.062270 -2.812035 -3.532588 -9.255291 -4.783310 -10.607113 -4.007548 -5.726850
1115 1115 -179.690809 -430.921987 -244.620814 -301.194331 58.0 62.324539 25.954151 50.169640 -755.364416 ... 0.662318 0.795600 7.451465 -3.112160 -1.584609 -9.603307 -5.175364 -11.635361 -7.566449 -7.385186
1116 1116 -178.609499 -416.061316 -238.913211 -296.585357 58.0 60.326950 27.636576 51.779129 -736.783370 ... 0.665393 0.914440 4.989163 -2.814465 1.763269 -7.132625 -6.544062 -11.031563 -5.858157 -6.581699
1117 1117 -173.444009 -405.020399 -229.325042 -285.854424 58.0 60.780064 22.240237 56.533185 -707.024586 ... 0.529463 1.487205 7.263872 -2.837328 0.400207 -9.312972 -5.214193 -9.412695 -9.562791 -4.147527
1118 1118 -174.352874 -404.882857 -232.704731 -290.039086 58.0 62.934132 26.216408 58.354414 -733.829222 ... 0.716470 0.913194 5.907705 -2.781841 -2.318053 -8.904111 -5.395860 -9.661883 -5.398953 -6.435435
1119 1119 -187.798702 -428.230117 -252.781598 -307.875285 58.0 62.205866 28.057959 62.151074 -726.502278 ... 0.943809 1.396559 7.720693 -3.483403 -0.722411 -10.138624 -5.764216 -11.309334 -7.106441 -5.359867
1120 1120 -175.419493 -424.431742 -239.308863 -296.764866 58.0 61.161116 22.387550 55.973068 -736.495045 ... 1.067481 0.725100 6.398078 -3.135888 -1.018849 -8.495286 -5.848612 -10.507679 -6.936360 -5.979812
1121 1121 -177.214453 -415.670048 -241.089175 -293.190364 58.0 61.558249 21.352841 29.267518 -729.847428 ... 0.882144 0.507857 5.510611 -2.573738 0.886495 -8.164106 -5.841094 -9.640226 -6.933722 -7.022550
1122 1122 -182.867201 -425.713621 -243.044299 -301.830884 58.0 60.753187 24.211236 32.745059 -708.737646 ... 0.833724 1.567063 7.799867 -2.788074 0.158322 -10.072163 -2.016233 -9.945332 -10.334942 -4.894326

1123 rows × 50 columns


In [64]:
t373_super_narrow.to_csv("/Users/weilu/Research/data/t373_super_narrow.csv")

In [63]:
t373_super_narrow.drop("level_0", axis=1).reset_index(drop=True).reset_index().plot("level_0","Lipid1")


Out[63]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a13c8b6d8>

In [81]:
t373_super_narrow.drop("level_0", axis=1).reset_index(drop=True).reset_index().plot("level_0","Lipid7")


Out[81]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a1723dbe0>

In [75]:
t373_narrow = t373_narrow.reset_index(drop=True)
t373_narrow["BiasedEnergy"] = t373_narrow["TotalE"] + 0.2*t373_narrow["AMH_4H"]

In [77]:
t373_narrow.sort_values("BiasedEnergy").head()


Out[77]:
2186    0.002062
398     0.002075
20     -1.876488
988     0.002086
2261    0.002059
Name: Lipid1, dtype: float64

In [68]:
t373_super_narrow = t373_super_narrow.reset_index(drop=True)
t373_super_narrow["BiasedEnergy"] = t373_super_narrow["TotalE"] + 0.2*t373_super_narrow["AMH_4H"]

In [78]:
t373_super_narrow.query("Lipid1 < -0.5").sort_values("BiasedEnergy").head().to_csv("/Users/weilu/Research/data/selected.csv")

In [82]:
t373_super_narrow.query("Lipid1 < -0.5 and Lipid7 < -0.5").sort_values("BiasedEnergy").head()["Lipid1"]


Out[82]:
Series([], Name: Lipid1, dtype: float64)

In [84]:
t373_narrow.query("Lipid1 < -0.5 and Lipid7 < -0.5").to_csv("/Users/weilu/Research/data/selected2.csv")

In [89]:
t373_narrow.sort_values("DisReal", ascending=False).head()


Out[89]:
level_0 AMH AMH-Go AMH_3H AMH_4H BiasTo DisReal Dis_h56 Distance Energy ... rg6 rg_all z_average z_h1 z_h2 z_h3 z_h4 z_h5 z_h6 BiasedEnergy
946 286388 -179.816118 -436.125312 -245.541039 -305.695423 68.0 64.995160 26.508368 57.145418 -717.405939 ... 1.520013 7.289126 -2.577021 -1.175693 -7.954141 -2.995597 -8.741945 -8.811388 -4.013220 -788.845781
546 221108 -201.469940 -407.854973 -266.116236 -308.453982 66.0 64.987222 24.206840 42.046223 -681.002588 ... 1.198128 8.335522 -3.220784 -6.182657 -8.109057 -7.768108 -12.207467 -1.276039 -7.417777 -748.609091
532 220916 -203.006755 -414.495915 -261.079897 -304.069182 66.0 64.987207 24.529796 38.266241 -730.848119 ... 1.328753 7.506422 -2.659843 -0.392917 -6.738003 -6.311969 -8.566641 -4.399358 -6.305643 -795.856419
351 131056 -175.660512 -399.364832 -241.721499 -297.085204 62.0 64.975605 33.820984 64.870234 -689.285927 ... 1.030485 7.311189 -3.075666 -1.779076 -7.365427 -5.637872 -10.007806 -9.452039 -6.223536 -760.507156
2248 661197 -169.672965 -426.494537 -235.575945 -293.426529 64.0 64.974094 25.550759 -58.916889 -707.111669 ... 0.918407 6.452709 -2.650790 -1.800819 -8.767094 -3.838908 -10.032964 -4.690880 -5.962602 -777.374805

5 rows × 51 columns


In [85]:
t373_narrow.query("Lipid1 < -0.5 and Lipid7 < -0.5")


Out[85]:
level_0 AMH AMH-Go AMH_3H AMH_4H BiasTo DisReal Dis_h56 Distance Energy ... rg6 rg_all z_average z_h1 z_h2 z_h3 z_h4 z_h5 z_h6 BiasedEnergy
101 27117 -203.930506 -410.706077 -274.186428 -331.105482 76.0 64.897123 35.214455 37.688040 -685.391837 ... 1.732591 9.798258 -2.963674 -0.805897 -7.900613 -0.682853 -9.747542 -6.584439 -14.803409 -756.022058
1184 307888 -195.630242 -435.155569 -256.611899 -309.100543 64.0 58.183612 19.117130 53.955815 -736.440977 ... 1.423229 5.543619 -3.372721 -1.120181 -6.685898 -4.955295 -10.356982 -8.509524 -4.613997 -806.479888
1185 309158 -193.264620 -432.867410 -262.231255 -319.094199 64.0 58.600919 26.562725 -39.499154 -728.018780 ... 2.024190 7.469871 -3.195907 -3.636113 -5.186055 -2.285889 -9.187340 -8.547995 -3.866942 -799.467778
1193 380116 -194.734815 -415.998650 -261.859307 -324.052138 76.0 64.182486 40.610641 41.699050 -727.524526 ... 1.431345 6.697026 -3.216031 -1.079433 -7.731002 -5.865393 -9.799235 -5.988281 -16.944518 -798.934579
1194 380800 -184.085074 -395.333849 -253.502592 -304.337555 76.0 63.458593 43.401303 28.169537 -697.228949 ... 2.309146 6.624908 -2.896678 -1.165570 -6.983405 -4.931913 -10.518770 -8.802494 -7.181036 -765.655801
1491 443746 -199.795756 -421.490782 -270.596935 -328.038519 80.0 64.888988 33.014588 22.832945 -756.243689 ... 3.683204 9.512102 -3.225312 -1.372187 -4.244962 -1.137230 -7.634294 -9.893363 -12.793285 -826.553641

6 rows × 51 columns


In [86]:
t373_super_narrow.query("Lipid1 < -0.5").sort_values("BiasedEnergy").head()


Out[86]:
level_0 AMH AMH-Go AMH_3H AMH_4H BiasTo DisReal Dis_h56 Distance Energy ... rg6 rg_all z_average z_h1 z_h2 z_h3 z_h4 z_h5 z_h6 BiasedEnergy
10 21186 -209.133908 -418.951106 -270.329612 -313.703091 76.0 62.014634 25.631543 59.764704 -795.730168 ... 0.650584 5.075778 -2.723255 -4.000245 -7.756103 -8.994198 -5.593929 -0.685517 -3.082913 -864.700700
783 581253 -201.116930 -413.832648 -258.702356 -304.689194 66.0 61.414392 26.005718 13.321524 -780.344135 ... 1.375310 7.643183 -2.961339 -2.644498 -9.656189 -12.192673 -6.613459 -0.593869 -0.676587 -848.976545
304 226069 -203.865362 -414.742325 -264.843559 -309.038487 66.0 60.759228 25.615073 23.097784 -778.462800 ... 1.499382 6.344030 -2.984441 -3.419661 -9.565722 -8.099691 -8.470239 -6.105927 -4.251687 -847.279984
227 221220 -200.730946 -410.319419 -261.402907 -306.431810 66.0 61.064203 18.522741 55.609889 -775.898991 ... 1.371612 7.268464 -2.732144 -4.542499 -7.893796 -5.047760 -9.848075 -1.950217 -6.329883 -845.157923
871 587589 -194.713299 -408.114385 -258.357263 -303.285148 66.0 60.793929 25.228643 52.950716 -767.308158 ... 1.764626 6.267082 -3.479249 -1.210820 -8.421729 -5.441395 -9.063197 -8.485487 -5.500987 -833.864010

5 rows × 51 columns


In [ ]:
data.query("TempT == 373 and DisReal > 60 \
           and DisReal < 63 and z_average < -2.5 and z_average > -3.5").\
        query("Lipid1 < -0.5")

In [91]:
data.query("TempT == 373 and DisReal > 50 \
           and DisReal < 63 and z_average < -2.5 and z_average > -3.5").\
        query("Lipid1 < -0.5")


Out[91]:
level_0 AMH AMH-Go AMH_3H AMH_4H BiasTo DisReal Dis_h56 Distance Energy ... rg5 rg6 rg_all z_average z_h1 z_h2 z_h3 z_h4 z_h5 z_h6
690899 10899 -183.186433 -392.944653 -248.231963 -290.903219 84.0 62.765665 20.238180 4.321019 -722.852166 ... 2.083610 1.751864 8.232831 -2.584027 -0.334311 -4.870930 -4.314226 -7.357321 -12.419326 -3.192265
690963 10963 -203.890243 -410.824289 -263.026350 -303.628052 84.0 62.684794 26.680936 8.449340 -726.347395 ... 1.423125 1.197325 6.840901 -3.244232 -5.257919 -7.654789 -8.554059 -9.237917 -2.725016 -2.810763
700136 20136 -198.617280 -403.437657 -256.952363 -302.751807 76.0 62.154514 20.276552 57.604418 -671.685930 ... 0.825889 1.288798 6.359311 -2.564478 -2.033408 -8.763024 -8.968270 -9.715095 -2.393667 -4.623440
700168 20168 -204.006668 -404.623421 -266.981801 -310.144555 76.0 61.471915 22.424513 47.543739 -705.466515 ... 1.003719 0.931413 7.588703 -2.781509 -3.820230 -8.485840 -9.287819 -9.172349 -3.685424 -3.974061
700212 20212 -201.402359 -399.899319 -257.784101 -299.495533 76.0 60.809113 24.815046 60.198799 -670.265642 ... 0.710009 1.259152 5.545050 -2.753711 -3.074379 -9.317066 -7.355665 -8.175493 -4.717142 -3.300249
700276 20276 -205.320118 -413.030582 -267.203097 -306.812533 76.0 61.589629 15.407709 61.199536 -707.336586 ... 0.799255 0.998693 6.362230 -2.644398 -2.460090 -9.528058 -5.657994 -6.338014 -6.228574 -2.725754
700368 20368 -178.281697 -376.366721 -237.920124 -282.115608 76.0 62.458367 21.742777 60.658867 -678.643748 ... 0.892182 2.258068 8.675508 -2.931965 -1.060059 -9.247739 -11.683983 -10.090947 -6.260215 -1.603898
700468 20468 -178.883857 -382.595805 -241.597731 -284.935977 76.0 59.233940 17.803061 58.321568 -677.582467 ... 1.175440 2.489691 9.451321 -3.242794 -2.487269 -9.405203 -8.207869 -11.912090 -2.094131 -6.141665
701044 21044 -186.817382 -384.768943 -249.155596 -285.446440 76.0 62.912696 25.874808 62.743467 -704.606274 ... 0.765338 0.958489 6.955008 -2.730942 -2.162102 -6.211948 -8.597890 -8.595427 -5.751583 -4.693169
701120 21120 -205.672390 -405.665475 -265.144647 -303.513149 76.0 59.118626 18.761977 59.019030 -736.470916 ... 1.580592 1.107690 6.606527 -2.867801 -2.758255 -8.365926 -9.588418 -6.454264 -4.806064 -2.829348
701124 21124 -199.724862 -407.073971 -264.479602 -304.586851 76.0 62.061784 20.991611 61.964846 -731.888874 ... 1.204239 0.657606 6.559105 -3.050972 -4.354171 -8.348043 -8.444871 -7.364612 -3.183824 -3.659724
701182 21182 -203.031963 -409.457162 -263.489526 -305.137466 76.0 60.114533 25.969850 57.396877 -748.906300 ... 1.145960 1.643953 6.771216 -2.769939 -3.430384 -9.706465 -8.892401 -7.016079 1.900854 -3.852103
701186 21186 -209.133908 -418.951106 -270.329612 -313.703091 76.0 62.014634 25.631543 59.764704 -795.730168 ... 0.813192 0.650584 5.075778 -2.723255 -4.000245 -7.756103 -8.994198 -5.593929 -0.685517 -3.082913
701276 21276 -199.321702 -404.268693 -259.845269 -303.878295 76.0 62.883368 13.898133 62.723456 -688.334453 ... 0.648381 2.660175 8.138812 -3.013106 -1.382305 -7.085366 -7.674150 -9.222306 -8.643840 -4.594032
701368 21368 -192.458934 -392.447008 -247.879018 -289.635008 76.0 61.886092 17.251761 61.447822 -683.297323 ... 0.654819 1.696571 7.362176 -2.704251 -0.990646 -10.015917 -4.681644 -8.239166 -5.716358 -4.997329
701476 21476 -201.866091 -393.521296 -263.739594 -305.039912 76.0 61.263742 14.333677 60.656736 -699.154275 ... 0.667946 0.943300 5.665992 -2.986017 -1.733400 -7.803968 -7.067322 -7.863725 -8.757457 -2.709796
701744 21744 -181.221021 -377.463607 -237.919629 -281.416346 76.0 61.607309 24.374316 59.861844 -681.319335 ... 1.035286 1.554074 7.615217 -2.945745 -2.379840 -5.846920 -6.168532 -10.228673 -6.082994 -6.736689
701768 21768 -192.502843 -390.958450 -251.793742 -295.671782 76.0 53.718974 26.988017 47.728832 -705.437122 ... 0.734432 1.513660 5.661005 -2.937127 -2.079911 -6.932423 -5.748674 -10.243032 -6.169006 -5.348224
701780 21780 -189.710193 -390.173220 -253.045609 -295.121123 76.0 61.631306 24.044134 60.144295 -679.540192 ... 0.868744 0.511458 5.450385 -2.739204 -1.619467 -7.916267 -6.572121 -8.527189 -6.398939 -7.221901
701880 21880 -196.183966 -406.138688 -258.857467 -299.875884 76.0 61.946134 25.504089 61.291518 -719.405160 ... 1.094599 1.312474 6.926905 -2.650496 -4.341284 -10.439736 -3.986843 -8.784379 -4.672728 -3.861032
701888 21888 -182.123524 -382.441557 -234.983425 -275.899654 76.0 61.295090 19.887148 52.833097 -699.013294 ... 0.950484 1.048522 6.631513 -3.259112 -5.539501 -9.242057 -6.369288 -7.044428 -9.616248 -2.159119
701912 21912 -189.169792 -385.324471 -248.156855 -290.348566 76.0 60.681187 18.173458 46.942436 -696.476873 ... 0.722515 1.190232 5.971119 -2.946683 -1.995478 -8.974955 -8.833224 -7.349788 -6.732135 -1.237385
701916 21916 -186.931038 -386.367808 -242.847558 -282.272994 76.0 58.652312 12.701777 49.232927 -692.828464 ... 1.504041 1.630386 7.021528 -2.553763 -2.004846 -8.324360 -9.997737 -9.259703 -4.593541 -1.491685
701948 21948 -196.316278 -400.143398 -255.116610 -298.578717 76.0 56.487222 18.780343 47.179682 -687.715042 ... 1.017564 2.798181 9.120421 -2.690931 -1.519216 -7.825602 -7.605637 -7.611923 -4.665628 -1.864141
702108 22108 -190.220942 -402.813799 -249.167746 -295.647170 76.0 62.378067 21.391853 50.484732 -723.196455 ... 0.587846 1.598440 7.352005 -3.249223 -2.029978 -6.738988 -7.185882 -10.995796 -8.571060 -4.540602
702582 22582 -197.277252 -413.890626 -254.293288 -297.855477 76.0 57.613737 26.254727 36.994472 -730.957889 ... 1.000809 1.481825 6.455283 -2.717015 -1.265193 -8.254415 -6.241128 -10.476718 -7.183740 -4.966733
703062 23062 -204.807537 -417.642170 -269.440318 -309.639803 76.0 57.803567 26.887167 35.130313 -739.331052 ... 0.756028 1.581873 8.001162 -2.853559 -3.947986 -7.351372 -8.160585 -9.203630 -6.901076 -2.597042
703180 23180 -196.827300 -393.983121 -252.648082 -293.313550 76.0 61.762469 15.618466 54.818228 -690.801136 ... 1.028693 0.547849 5.459401 -3.155704 -1.160795 -9.622743 -14.384605 -6.285290 -4.718719 -5.475780
703488 23488 -208.609130 -418.099838 -268.313641 -310.499139 76.0 62.221925 13.688927 32.159859 -695.677421 ... 1.050160 1.105813 9.495926 -3.234484 -0.733311 -6.274690 -14.411684 -7.791673 -4.620366 -5.713177
703790 23790 -181.355665 -403.939860 -242.282703 -290.700230 76.0 59.296378 24.179108 58.972964 -705.960324 ... 1.141144 0.895286 7.219929 -3.193301 0.605638 -8.064535 -8.238747 -10.538641 -6.125196 -7.465287
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
1268997 588997 -206.175593 -413.081496 -270.324370 -311.668298 66.0 59.646147 19.713229 -49.448442 -707.077093 ... 1.189504 2.014005 8.633877 -3.121783 -3.175323 -9.015367 -7.342606 -8.306577 -4.215508 -2.690258
1269001 589001 -198.958059 -400.768496 -261.263961 -302.530061 66.0 62.130993 16.878213 -48.828490 -708.127787 ... 0.958035 1.874443 6.999512 -2.716800 -3.220037 -7.788104 -8.737968 -8.632955 -5.512985 -1.461505
1269017 589017 -195.317842 -409.911852 -254.741716 -300.500280 66.0 56.990298 24.915816 -51.860070 -724.728725 ... 0.642439 1.061416 5.034071 -3.086536 -2.300261 -9.631873 -5.425882 -7.558646 -8.286181 -3.384803
1269021 589021 -197.375044 -402.895829 -256.599329 -300.095061 66.0 60.179164 26.633738 -47.429815 -715.940301 ... 0.735274 1.869645 7.100545 -3.348017 -2.833283 -10.041921 -8.331452 -10.458286 -5.679516 -4.114553
1269037 589037 -209.271262 -414.353628 -273.875048 -315.561505 66.0 61.653446 26.620225 -49.370929 -713.904281 ... 0.830634 2.338165 8.714490 -2.795031 -1.997809 -7.017526 -8.127468 -9.932178 -5.612324 -4.019405
1269269 589269 -200.626937 -427.477697 -268.414253 -310.910024 66.0 61.910637 22.661676 -59.600774 -728.453609 ... 0.670657 2.206382 8.639000 -2.910570 -0.175272 -6.970378 -7.892649 -7.708077 -7.597787 -3.442521
1269273 589273 -205.207551 -429.969834 -269.757446 -313.937386 66.0 60.104471 23.849378 -54.434424 -742.807014 ... 0.823515 1.791575 8.388665 -2.834344 -2.358594 -8.247067 -5.620534 -7.163503 -5.981969 -3.238812
1269296 589296 -189.537055 -399.957369 -244.584853 -287.275394 66.0 59.267747 23.059232 -42.649899 -739.279074 ... 0.917824 1.486891 6.900105 -2.832247 2.741739 -6.977494 -23.428993 -8.851168 -1.933481 -3.244530
1269304 589304 -187.854503 -389.629681 -245.450350 -287.665488 66.0 56.554623 31.215324 -32.567196 -732.780499 ... 1.773059 1.091975 8.070883 -3.387098 0.478851 -8.695138 -19.629786 -9.364143 0.546153 -6.366379
1269308 589308 -200.627666 -408.682091 -255.977868 -300.803976 66.0 62.669429 28.138494 -42.440786 -708.548246 ... 0.740696 1.489314 7.612840 -2.875231 -0.967442 -9.120769 -20.048198 -7.888980 0.797409 -3.575440
1269312 589312 -189.171773 -397.974569 -248.821525 -294.821612 66.0 57.172372 24.429924 -40.790908 -701.170875 ... 0.711871 1.434385 7.489260 -2.788560 -1.356326 -9.717111 -18.095694 -6.968045 -1.945319 -1.962442
1269316 589316 -197.394098 -401.656583 -249.232361 -290.621906 66.0 58.754322 21.795932 -44.394981 -678.717657 ... 0.872674 1.730079 8.279203 -3.236940 -1.384966 -7.596757 -18.013536 -7.363272 -4.857256 -2.255964
1269665 589665 -202.220052 -428.763129 -267.178644 -311.871929 66.0 55.133809 25.045217 -53.965399 -719.522953 ... 0.675863 1.429119 6.099376 -2.828044 -2.181174 -7.501361 -6.856048 -9.743975 -6.133390 -5.651070
1269669 589669 -204.536841 -417.309084 -261.645710 -304.075569 66.0 56.296438 23.328745 -55.188552 -706.165969 ... 0.714496 1.900280 6.420405 -2.841328 -1.289287 -6.450688 -8.215228 -8.587292 -6.852324 -6.023401
1269673 589673 -195.635942 -410.156032 -256.618186 -304.164843 66.0 55.606803 23.973960 -55.467348 -702.458174 ... 0.752963 1.269914 6.541157 -3.145735 -5.270467 -8.432287 -8.326075 -9.388442 -3.721079 -2.424047
1269853 589853 -192.520102 -391.861884 -248.302526 -292.452879 66.0 60.080942 23.707523 -58.323521 -717.225819 ... 0.715633 1.626571 6.213676 -2.883250 -1.703077 -8.554884 -9.241358 -7.388697 -4.642071 -4.239107
1269857 589857 -185.742048 -391.147576 -247.841499 -290.156673 66.0 62.639550 28.291251 -60.871187 -707.501329 ... 0.836648 1.930367 6.047369 -2.601125 -2.581861 -7.543164 -6.030997 -9.696417 -2.715498 -6.142462
1269865 589865 -203.791760 -407.472664 -266.033762 -310.371576 66.0 58.010427 21.078391 -51.445441 -754.551040 ... 0.854346 1.119514 7.977202 -2.505882 -2.791705 -7.169650 -9.511132 -9.767840 0.674365 -4.603699
1269881 589881 -197.698554 -390.739975 -255.450955 -296.534565 66.0 62.084208 22.970636 -56.825673 -692.750096 ... 2.470838 0.938032 7.377258 -3.278848 -1.789959 -9.021852 -5.909199 -9.266774 -8.201443 -5.493736
1269885 589885 -194.596466 -393.012748 -255.124541 -296.484471 66.0 61.501541 28.286743 -59.818836 -694.050257 ... 2.592555 0.700992 7.041231 -2.996247 -3.243499 -8.285177 -7.209530 -8.543974 -6.394227 -3.851798
1269917 589917 -201.928941 -414.922867 -265.103752 -308.238866 66.0 58.740131 23.893542 -58.363949 -745.035451 ... 0.911010 1.938054 10.634805 -2.895278 -1.829822 -10.793406 -9.007310 -7.088307 -6.472308 -3.049969
1269969 589969 -197.531302 -399.947857 -253.866833 -295.366495 66.0 60.301495 21.961750 -47.760020 -673.461715 ... 0.668893 1.525860 7.725526 -2.819914 -1.387756 -4.698529 -9.245294 -7.991418 -8.103676 -5.234795
1276452 596452 -196.441283 -452.382330 -268.972960 -328.836901 52.0 50.313176 28.317405 -38.114590 -753.671780 ... 0.993940 1.885557 7.280148 -2.519170 -2.132660 -7.505605 -2.238745 -9.856489 -6.379346 -4.589328
1277192 597192 -191.946999 -420.779853 -261.841588 -322.197433 52.0 53.311645 25.615088 -28.245318 -725.848342 ... 1.388779 1.753923 9.211358 -2.843699 -4.977138 -5.711322 -5.693465 -9.169188 -2.864024 -5.528937
1327535 647535 -200.038669 -398.397826 -258.038980 -299.383007 68.0 58.354157 62.349924 -56.561922 -721.196566 ... 0.905844 1.642574 5.237655 -2.536371 -2.217285 -6.773171 -23.253018 6.419240 9.915656 -16.221222
1340244 660244 -183.227292 -445.954893 -254.838341 -314.632417 64.0 51.254924 25.929591 -49.354635 -744.601645 ... 0.949192 0.950415 6.667048 -2.845784 -0.712517 -6.391158 -2.945272 -9.045309 -4.685939 -4.195215
1361095 681095 -198.383166 -457.790822 -274.056868 -332.888421 58.0 51.222749 30.463479 36.101032 -780.672889 ... 0.827646 1.581125 6.834347 -3.180894 -2.706407 -6.804406 -3.780691 -10.547629 -6.026383 -5.428277
1361376 681376 -201.869322 -449.733773 -272.493567 -334.316732 58.0 52.350548 26.053590 42.167270 -784.600417 ... 0.854357 1.452925 6.409710 -3.212957 -3.743113 -7.620278 -3.923153 -8.884580 -2.111910 -3.599623
1369486 689486 -186.994671 -417.664119 -241.196922 -300.534501 58.0 53.013559 28.538203 52.722399 -682.820481 ... 1.109016 1.172991 7.160349 -3.243724 -2.897164 -9.893152 -5.603207 -10.508676 -7.474262 -6.455674
1369510 689510 -184.971977 -410.810933 -239.202005 -297.116157 58.0 52.707034 31.208709 52.512279 -727.388440 ... 1.298493 1.200276 6.244463 -3.168358 -1.646690 -7.197175 -6.412059 -10.390096 -4.543224 -6.917837

1145 rows × 50 columns


In [95]:
data.query("TempT == 373 and DisReal > 50 \
           and DisReal < 63 and z_average < -2.5 and z_average > -3.5").\
        query("Lipid1 < -0.5 and Lipid7 <  -0.5")


Out[95]:
level_0 AMH AMH-Go AMH_3H AMH_4H BiasTo DisReal Dis_h56 Distance Energy ... rg5 rg6 rg_all z_average z_h1 z_h2 z_h3 z_h4 z_h5 z_h6
719790 39790 -200.165415 -449.409061 -271.433191 -332.108513 72.0 50.788637 22.805240 41.767110 -738.455973 ... 0.773651 1.059144 6.847160 -2.845979 -2.202658 -5.662142 -2.826926 -9.916290 -7.535219 -6.204875
719850 39850 -200.344851 -441.937429 -271.845396 -325.117365 72.0 52.241362 28.935426 44.313962 -725.821803 ... 0.892460 1.538403 6.691036 -3.025566 -2.269948 -7.366669 -4.213091 -9.736521 -4.391394 -4.760685
719878 39878 -197.630924 -447.333869 -267.207378 -327.913469 72.0 51.357889 23.419343 36.659341 -756.478372 ... 0.627075 1.902497 6.859819 -3.090808 -0.002232 -7.145503 -3.959742 -8.896298 -11.198955 -3.310982
719906 39906 -201.713781 -439.888574 -264.019739 -323.642670 72.0 51.514333 27.904597 7.737685 -738.121354 ... 0.696223 1.522991 6.630852 -2.903002 -4.398953 -7.911909 -2.229540 -10.120626 -8.413158 -4.994734
719990 39990 -202.633308 -443.623278 -273.798239 -330.982823 72.0 54.114648 21.165653 20.712872 -771.843928 ... 1.013205 0.857463 6.021266 -2.837612 -2.287464 -7.868649 -3.599279 -9.753709 -8.166509 -4.782810
726247 46247 -196.469346 -430.835950 -258.066898 -313.598979 54.0 51.711936 23.486991 43.789804 -750.340328 ... 1.595918 1.521470 7.705958 -3.355514 -2.399803 -7.320083 -3.876052 -9.448349 -7.370891 -4.908992
727783 47783 -198.250640 -464.141351 -273.541379 -332.967664 54.0 50.104197 27.451390 -49.879270 -734.129925 ... 0.707654 1.634080 7.552173 -3.328340 -2.251397 -6.992576 -4.644662 -10.234429 -5.786203 -4.981785
729643 49643 -195.036661 -444.638667 -267.339083 -327.218010 54.0 50.706115 23.106216 18.144648 -764.082002 ... 0.615103 1.405312 6.485823 -3.144832 -0.739990 -7.564514 -4.175432 -9.858508 -7.854902 -5.889672
742860 62860 -194.089598 -443.905178 -268.759924 -328.402636 50.0 50.623890 28.301420 -50.589917 -720.442100 ... 0.963211 1.831142 7.797881 -3.273377 -2.468980 -7.795293 -3.778621 -8.946783 -7.060067 -3.449528
750714 70714 -201.641860 -454.454174 -271.715113 -330.275092 56.0 50.787978 24.870885 -9.548726 -735.221627 ... 0.830352 2.022193 6.719370 -3.390253 -2.627952 -6.171960 -4.163761 -9.712920 -8.098449 -4.235026
752664 72664 -202.677818 -446.675001 -276.250687 -332.286089 56.0 51.160542 28.185510 -36.384685 -774.050991 ... 0.908670 0.884803 6.695200 -2.839671 -0.645209 -6.393926 -3.623076 -9.883393 -7.094947 -7.297224
754044 74044 -198.379340 -443.708618 -266.710593 -322.374605 56.0 51.035493 26.114292 7.420436 -694.411091 ... 1.198774 1.489947 6.576070 -3.490860 -4.030409 -7.004151 -6.210979 -10.229994 -1.545279 -4.893935
755031 75031 -201.223096 -468.535688 -277.909824 -338.151473 56.0 51.535391 26.173612 40.988593 -746.247873 ... 0.486835 1.634089 6.389906 -2.694322 -1.275631 -5.704517 -2.732794 -9.601032 -10.533636 -4.769703
756615 76615 -201.107425 -458.864196 -279.046588 -338.893558 56.0 50.392118 26.021881 42.740306 -733.827676 ... 0.736299 1.257491 5.950235 -2.776235 -2.071928 -6.522274 -3.140326 -9.628737 -6.934875 -4.341773
758531 78531 -196.703814 -456.833451 -267.626964 -330.436077 56.0 50.489506 22.963656 15.965487 -750.223406 ... 0.518075 2.913659 9.531336 -3.236349 -3.353020 -9.975313 -0.814542 -10.252510 -12.783159 -3.539712
758607 78607 -201.961567 -465.366990 -273.734642 -335.445389 56.0 50.486977 23.850124 38.023827 -784.023902 ... 1.237406 1.148158 6.250248 -3.127385 -2.506838 -8.510066 -3.005885 -10.687987 -6.896061 -3.931139
811672 131672 -195.685650 -446.990555 -268.242923 -326.638990 62.0 50.809176 25.195898 49.728050 -759.607374 ... 0.507863 1.304791 6.750247 -3.496952 -2.138917 -8.222864 -3.866702 -10.237865 -9.474794 -6.585124
811780 131780 -192.793754 -435.954342 -266.331874 -324.971749 62.0 54.689168 23.166446 41.180811 -729.657944 ... 0.671725 1.688022 7.328453 -2.639537 -1.808001 -7.047007 -4.171241 -8.439996 -3.263159 -3.750360
812044 132044 -193.807835 -444.256472 -264.910251 -326.597502 62.0 50.529089 23.796452 50.525372 -732.839541 ... 0.716078 1.290359 6.767304 -2.512858 -0.977001 -6.081578 -3.712467 -11.453116 -4.195051 -5.340472
812242 132242 -196.043371 -451.905188 -265.925803 -324.952898 62.0 51.882807 30.245370 51.751714 -749.022934 ... 0.777494 1.493325 7.020595 -2.669557 -2.365405 -6.806451 -2.842407 -9.262860 -5.171679 -4.581491
812458 132458 -198.783360 -459.099176 -271.548890 -330.105330 62.0 53.057757 25.783379 21.775259 -752.864536 ... 0.589080 1.689254 7.612261 -3.088192 -1.654127 -8.730777 -2.838796 -8.760909 -8.938932 -2.626597
812530 132530 -195.365609 -453.575006 -268.740002 -327.137573 62.0 50.061716 25.558939 -4.556778 -759.957106 ... 0.711522 1.121382 6.275860 -3.482844 -2.393810 -8.904796 -3.246068 -10.371846 -6.840868 -5.668174
812742 132742 -188.030059 -445.846192 -260.438140 -319.914260 62.0 50.585611 25.402589 43.332694 -746.790090 ... 1.108836 0.985385 7.873919 -2.699086 -3.007850 -5.683700 -3.866413 -7.265112 -2.028987 -3.660609
812778 132778 -206.730870 -450.084883 -278.749670 -339.127098 62.0 51.209409 22.510044 39.363595 -763.492984 ... 0.694680 1.852298 7.738855 -2.667502 -3.237607 -5.730263 -2.447764 -8.273436 -8.200360 -2.756189
813404 133404 -203.076636 -446.038269 -269.359331 -325.638818 62.0 51.279605 34.826206 -20.521698 -751.782484 ... 1.275803 1.630489 7.413025 -2.692595 -0.287330 -6.520533 -3.813641 -8.099008 -6.769757 -4.532463
813711 133711 -205.717512 -452.990696 -275.476552 -334.002630 62.0 50.421594 25.079627 -4.767498 -746.029281 ... 0.933477 1.019419 5.685331 -3.055472 0.851432 -5.979148 -4.582191 -10.909508 -3.003817 -5.633610
813867 133867 -200.786106 -446.091026 -263.930845 -321.087868 62.0 51.342468 28.039261 -45.445765 -679.405695 ... 0.615657 1.554479 6.379517 -2.884294 -0.932242 -6.522517 -3.580184 -10.754862 -7.157491 -5.577267
813935 133935 -196.954447 -437.587015 -263.244392 -319.249998 62.0 53.026542 27.345927 -52.334388 -708.869921 ... 0.854182 1.137479 5.909306 -3.145507 -2.710075 -8.419362 -5.206515 -10.126986 -3.147174 -5.632754
813939 133939 -189.758371 -438.455236 -263.974164 -321.401470 62.0 50.368504 23.120134 -50.003988 -723.199280 ... 1.280615 1.044352 6.747257 -2.764673 -4.114660 -7.857093 -4.009234 -9.152545 -2.525877 -4.780769
814059 134059 -195.790238 -437.247549 -273.695851 -328.210358 62.0 51.270158 25.579633 -46.266417 -732.810318 ... 0.990910 1.004133 7.287486 -3.279467 -0.962216 -6.957163 -5.086975 -10.414732 -5.478723 -7.162308
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
1176751 496751 -193.514893 -434.318062 -257.258748 -312.302567 62.0 52.345760 26.385151 10.740939 -754.325943 ... 0.838906 1.005643 6.215179 -3.242760 -2.535907 -8.712994 -4.401235 -8.678406 -4.394340 -4.718700
1220093 540093 -186.218786 -432.988866 -255.468277 -316.061583 60.0 53.583783 27.952520 6.591375 -720.799745 ... 0.872264 1.174639 6.226084 -3.453807 -2.660852 -7.451061 -3.619183 -8.242765 -5.762594 -4.079698
1220125 540125 -186.799105 -429.906594 -255.025388 -306.321808 60.0 52.362600 27.765552 30.440628 -721.215153 ... 1.069145 1.242505 6.847517 -2.982997 -2.580666 -8.354766 -5.626424 -9.788451 -8.851859 -5.437784
1220129 540129 -201.109444 -455.501678 -275.140424 -333.805607 60.0 50.803381 29.909651 20.099564 -766.031604 ... 1.081118 1.693476 7.533317 -2.604809 -2.969046 -7.433532 -2.177289 -9.812789 -7.659538 -4.280814
1220301 540301 -186.901870 -416.216919 -253.149599 -305.404728 60.0 51.490177 25.847866 3.248905 -701.577611 ... 0.802854 1.533020 6.762323 -2.746508 -2.682997 -5.874521 -3.351435 -10.457261 -9.276889 -5.002982
1220572 540572 -189.347836 -438.685485 -264.988997 -320.279453 60.0 51.806495 22.378489 45.767575 -739.789179 ... 0.616204 1.356462 6.169099 -2.990710 -3.142569 -9.117357 -2.234972 -9.305985 -8.428978 -3.528727
1220716 540716 -205.907741 -445.529729 -279.380398 -336.755454 60.0 53.017000 28.717729 23.859664 -736.665185 ... 1.314830 2.165931 7.904222 -2.590765 -1.082956 -5.589635 -3.253586 -9.459391 -5.094195 -4.852201
1220968 540968 -194.683836 -435.497834 -262.537826 -318.768663 60.0 50.284495 26.473114 -10.881727 -740.409395 ... 0.695779 0.882157 6.253368 -2.667682 -2.930605 -7.590197 -2.414570 -8.199575 -8.139731 -4.209792
1222100 542100 -200.611367 -455.050639 -265.960125 -324.772069 60.0 50.841672 26.408735 -3.716264 -734.829897 ... 1.075822 1.557858 6.830328 -2.840865 -2.708703 -8.145560 -3.454925 -8.734584 -4.512106 -4.136363
1224508 544508 -196.168359 -447.229231 -265.211032 -326.763035 60.0 53.676930 27.342816 -34.210306 -750.789683 ... 0.857518 1.167376 7.853244 -3.297989 -1.266613 -6.748556 -5.284507 -8.367167 -6.775813 -3.702166
1224512 544512 -193.582787 -437.163559 -260.912055 -317.808475 60.0 52.838512 25.614855 -34.769467 -717.441078 ... 1.366084 1.140156 9.085439 -3.340498 -1.883664 -5.259457 -7.101480 -8.256324 -2.335648 -6.106138
1224776 544776 -204.803983 -463.586672 -276.987259 -336.779925 60.0 51.086533 25.301598 28.612781 -750.162164 ... 0.783118 1.162314 6.110446 -2.813469 -2.750117 -6.660722 -3.446544 -10.500027 -4.495949 -5.551929
1224804 544804 -205.518468 -451.017719 -285.197581 -342.700365 60.0 50.722913 23.720977 40.550520 -715.371816 ... 0.550595 1.749836 6.697086 -2.979949 -3.019495 -6.591955 -2.948543 -10.143025 -7.474268 -4.048278
1224856 544856 -192.873894 -437.766831 -263.564130 -321.301197 60.0 51.165914 22.183556 45.911955 -745.337886 ... 0.909014 1.279765 7.230181 -2.739820 -1.873964 -8.240502 -3.136464 -9.109443 -5.864668 -5.537929
1226685 546685 -206.134771 -469.940035 -282.085121 -342.586015 60.0 50.647912 26.401981 49.348122 -731.440899 ... 0.792513 1.402470 6.282008 -2.536474 -0.933752 -7.146917 -3.623024 -9.919751 -2.715256 -4.963218
1226757 546757 -192.104617 -432.101557 -253.422250 -314.241610 60.0 50.012939 26.367561 40.206246 -683.583976 ... 1.169278 0.894607 6.050583 -3.087847 -3.102997 -7.965673 -5.087159 -10.899809 -5.492458 -6.760871
1226992 546992 -200.765462 -438.995212 -270.188021 -326.017473 60.0 51.945652 28.870609 40.607901 -695.571057 ... 0.823794 1.561181 7.257545 -2.828255 0.197037 -8.080164 -6.074479 -10.048370 -6.055605 -4.505040
1227992 547992 -199.465873 -458.197554 -272.402146 -329.575945 60.0 50.518378 26.091393 -50.462824 -796.541324 ... 0.560147 1.391444 6.445113 -2.857696 -1.171433 -7.878252 -1.652677 -9.969653 -9.218180 -4.361062
1228126 548126 -210.753452 -455.587115 -284.277558 -340.954588 60.0 50.155740 27.031484 -49.628537 -741.150215 ... 0.635942 1.760784 7.171745 -2.608679 -2.717912 -7.408545 -2.942437 -9.014423 -8.244957 -4.010917
1228766 548766 -204.417779 -442.174328 -277.635628 -333.484835 60.0 50.928444 32.604850 -46.833264 -743.557620 ... 0.807938 1.637943 6.962802 -3.076495 -3.262567 -7.645491 -5.849649 -11.154881 -3.855719 -8.013397
1228978 548978 -188.560958 -443.130051 -256.787011 -317.758748 60.0 51.055075 26.358040 -45.396674 -771.087756 ... 1.103116 0.782208 6.167376 -3.077610 -2.436334 -8.299979 -5.453096 -10.167808 -5.538985 -6.763757
1228982 548982 -187.981532 -435.899817 -252.609664 -310.762725 60.0 51.261099 28.075087 -44.424663 -749.666983 ... 1.356400 1.330652 7.070261 -2.959788 -2.126883 -7.255024 -4.477892 -9.498169 -5.278194 -5.551196
1229120 549120 -212.652155 -458.771619 -284.187422 -340.921157 60.0 51.264951 24.339055 -29.275953 -715.560250 ... 0.696383 1.733157 6.875580 -3.153061 -2.429856 -7.608244 -3.481359 -10.050414 -5.916584 -4.957045
1276452 596452 -196.441283 -452.382330 -268.972960 -328.836901 52.0 50.313176 28.317405 -38.114590 -753.671780 ... 0.993940 1.885557 7.280148 -2.519170 -2.132660 -7.505605 -2.238745 -9.856489 -6.379346 -4.589328
1277192 597192 -191.946999 -420.779853 -261.841588 -322.197433 52.0 53.311645 25.615088 -28.245318 -725.848342 ... 1.388779 1.753923 9.211358 -2.843699 -4.977138 -5.711322 -5.693465 -9.169188 -2.864024 -5.528937
1340244 660244 -183.227292 -445.954893 -254.838341 -314.632417 64.0 51.254924 25.929591 -49.354635 -744.601645 ... 0.949192 0.950415 6.667048 -2.845784 -0.712517 -6.391158 -2.945272 -9.045309 -4.685939 -4.195215
1361095 681095 -198.383166 -457.790822 -274.056868 -332.888421 58.0 51.222749 30.463479 36.101032 -780.672889 ... 0.827646 1.581125 6.834347 -3.180894 -2.706407 -6.804406 -3.780691 -10.547629 -6.026383 -5.428277
1361376 681376 -201.869322 -449.733773 -272.493567 -334.316732 58.0 52.350548 26.053590 42.167270 -784.600417 ... 0.854357 1.452925 6.409710 -3.212957 -3.743113 -7.620278 -3.923153 -8.884580 -2.111910 -3.599623
1369486 689486 -186.994671 -417.664119 -241.196922 -300.534501 58.0 53.013559 28.538203 52.722399 -682.820481 ... 1.109016 1.172991 7.160349 -3.243724 -2.897164 -9.893152 -5.603207 -10.508676 -7.474262 -6.455674
1369510 689510 -184.971977 -410.810933 -239.202005 -297.116157 58.0 52.707034 31.208709 52.512279 -727.388440 ... 1.298493 1.200276 6.244463 -3.168358 -1.646690 -7.197175 -6.412059 -10.390096 -4.543224 -6.917837

166 rows × 50 columns


In [97]:
data.query("TempT != 417 and DisReal > 50 \
           and DisReal < 63 and z_average < -2.5 and z_average > -3.5").\
        query("Lipid1 < -0.5 and Lipid7 <  -0.5")


Out[97]:
level_0 AMH AMH-Go AMH_3H AMH_4H BiasTo DisReal Dis_h56 Distance Energy ... rg5 rg6 rg_all z_average z_h1 z_h2 z_h3 z_h4 z_h5 z_h6
705501 25501 -216.112719 -442.122646 -291.026235 -347.501318 76.0 62.647961 44.540263 61.763450 -836.562429 ... 1.415303 3.163537 10.881090 -2.839091 1.001305 -5.652217 -3.721500 -8.175074 -5.209776 -13.531687
712055 32055 -209.110431 -474.873349 -285.046768 -347.584255 72.0 50.107109 22.905990 -18.148255 -872.040575 ... 0.892242 1.314513 6.642784 -2.864897 -2.255518 -6.794366 -4.231318 -9.941246 -4.001791 -4.464314
712123 32123 -201.882750 -478.405363 -278.612081 -338.638506 72.0 50.713034 25.995547 -17.065924 -894.482517 ... 0.668988 1.318091 6.655265 -2.562783 -2.618729 -6.824996 -2.391009 -9.096016 -6.743895 -4.326764
712363 32363 -196.528186 -458.403750 -263.834377 -324.781379 72.0 52.181114 26.092201 3.520444 -882.183331 ... 1.086510 1.262166 6.403256 -3.379419 -3.151524 -5.827708 -3.837842 -10.443586 -5.977787 -4.931309
712383 32383 -202.834556 -460.954077 -277.790391 -336.045307 72.0 51.816568 28.404361 -1.511252 -885.045070 ... 0.930861 1.677442 6.955258 -2.875876 -3.127862 -7.092646 -4.604151 -9.244971 -4.724257 -4.466391
712415 32415 -198.035807 -454.867104 -269.540361 -331.191978 72.0 52.909085 23.108023 -2.709018 -869.061721 ... 0.888004 1.320995 5.735684 -2.571396 -2.995288 -6.597189 -1.935688 -9.273756 -6.871897 -4.481668
712443 32443 -213.297177 -478.836781 -287.252104 -351.757006 72.0 51.307761 27.186603 -41.458740 -868.874787 ... 0.606321 1.571115 7.137922 -3.384934 -2.390039 -7.989829 -4.358318 -10.569474 -8.215844 -5.364211
712635 32635 -199.261592 -477.656795 -278.887136 -336.964914 72.0 51.389960 27.659903 -51.053635 -883.511477 ... 0.736839 1.166374 6.038508 -3.271137 -3.263933 -7.987193 -3.020235 -9.773566 -7.199903 -4.537628
712655 32655 -202.938620 -474.258664 -280.132648 -340.848097 72.0 54.094165 26.075946 -53.957802 -907.282188 ... 0.720345 1.337687 6.327291 -3.217493 -0.858811 -7.723681 -4.196795 -10.578383 -7.127138 -5.348803
712727 32727 -210.860842 -483.207946 -285.896993 -349.001349 72.0 50.142546 26.393601 -37.952584 -873.559742 ... 0.863319 1.042734 5.992498 -2.773625 -4.400515 -7.530472 -2.636377 -9.168671 -4.331411 -4.120156
712815 32815 -203.939654 -461.798283 -278.133084 -337.904154 72.0 50.217700 26.929243 -26.188490 -882.317089 ... 0.643534 2.329472 7.428863 -3.001262 -3.668368 -7.751020 -3.292236 -9.623116 -7.091410 -3.330697
712819 32819 -208.706170 -458.931880 -282.568007 -337.784543 72.0 54.290676 27.084439 -34.977718 -887.688510 ... 0.616687 1.819899 6.695512 -3.250176 -5.264868 -8.564899 -3.297005 -8.723756 -6.670083 -4.072600
712831 32831 -213.354454 -485.261987 -290.847314 -353.037058 72.0 51.052459 26.486073 -38.628780 -886.566720 ... 0.936373 1.408993 6.874656 -3.205695 -4.127098 -7.941273 -3.808619 -9.621473 -6.968050 -4.107309
713439 33439 -201.579713 -463.495093 -278.504778 -341.498059 72.0 56.985464 27.412848 18.384936 -908.657014 ... 0.705334 1.395254 7.261545 -3.067558 -1.127132 -7.929605 -3.025566 -9.420347 -8.426531 -4.179466
713447 33447 -187.732128 -461.852436 -264.086871 -327.134456 72.0 52.032391 25.842729 20.787414 -887.467647 ... 0.766126 1.064557 6.591318 -2.730665 -3.428248 -6.678818 -3.546450 -8.458464 -6.268741 -4.061106
713543 33543 -198.802493 -467.096038 -271.666050 -333.702920 72.0 54.305737 27.677667 18.309979 -919.990003 ... 0.658639 1.630729 7.347421 -3.350158 -3.505875 -9.053638 -3.746667 -10.160488 -6.552529 -4.542999
713567 33567 -205.701971 -471.545178 -281.114894 -341.014385 72.0 50.977163 29.323776 15.017174 -871.798472 ... 0.819609 1.385356 6.579523 -2.889971 -0.089324 -8.094182 -3.340111 -10.301329 -6.404581 -5.335358
713571 33571 -203.713041 -475.428870 -280.097022 -343.818785 72.0 50.316337 28.729577 11.817938 -869.231801 ... 0.759659 1.707409 7.490420 -2.651209 0.502036 -6.987162 -2.316745 -10.049113 -8.948140 -4.809160
713615 33615 -195.008750 -461.872889 -269.435609 -329.306137 72.0 53.537870 25.201087 31.771235 -872.589850 ... 0.748774 1.893062 7.548450 -2.640421 -1.641827 -9.216065 -2.511041 -10.483824 -7.133754 -4.127334
713863 33863 -206.922408 -470.894451 -283.454419 -342.399100 72.0 51.656396 27.233337 49.756195 -898.823005 ... 0.581395 1.595338 7.296386 -3.197257 0.580777 -8.588359 -1.781488 -9.819106 -9.937195 -5.794393
714019 34019 -199.395191 -468.142535 -271.705946 -332.976359 72.0 55.765441 27.340233 48.295557 -875.880244 ... 0.894061 1.672598 7.592737 -3.069105 -2.552166 -7.460417 -2.854443 -9.381278 -6.560907 -3.883470
714023 34023 -201.295877 -466.015703 -271.665873 -334.619391 72.0 50.418953 29.155868 45.852835 -867.066462 ... 0.978990 1.035782 6.182006 -2.901750 -0.743340 -8.860609 -4.066861 -9.476334 -3.636179 -5.723814
714123 34123 -206.999255 -474.194181 -287.202776 -345.962846 72.0 50.331694 26.385677 12.878362 -905.900327 ... 0.993454 1.084671 6.504696 -3.266631 -2.258252 -7.452685 -5.189509 -9.363580 -5.828822 -4.545452
714135 34135 -199.874553 -473.099344 -278.467912 -339.172310 72.0 50.476459 26.698683 -8.388617 -908.359713 ... 0.676562 1.544641 6.417561 -2.826561 -3.963820 -8.442261 -2.636974 -10.325858 -5.202625 -5.341656
714179 34179 -211.210675 -485.237524 -287.332905 -348.044205 72.0 50.965717 24.394887 4.416452 -892.036381 ... 0.768449 1.606717 7.586202 -2.753010 -1.706726 -7.534908 -2.606547 -8.486883 -8.240808 -3.906905
714195 34195 -207.496835 -467.618402 -287.055012 -348.076742 72.0 51.685500 24.445543 1.507234 -868.826498 ... 0.768739 1.184107 5.807833 -3.407235 -2.076780 -7.581669 -4.841240 -9.705282 -4.495337 -4.248610
714207 34207 -208.786324 -472.304155 -288.624193 -346.868362 72.0 51.724681 23.266303 4.885933 -867.368829 ... 0.802482 1.319326 6.681732 -2.971306 -0.766983 -6.287569 -4.897099 -9.029551 -4.934345 -5.225846
714231 34231 -201.838073 -476.207157 -280.080053 -343.752859 72.0 50.935898 28.009414 8.830703 -891.041639 ... 0.867087 1.030214 6.046582 -3.160521 -2.208117 -7.511999 -3.144967 -9.683085 -5.804514 -5.464363
714327 34327 -208.011813 -477.589148 -285.646787 -347.447562 72.0 51.596085 28.832780 21.531289 -847.941027 ... 0.724193 1.480718 6.016254 -2.745329 -0.843694 -7.203524 -3.019382 -10.162308 -7.783429 -4.872345
714331 34331 -204.155236 -467.538557 -281.155960 -341.783884 72.0 52.314530 30.970771 18.476432 -857.653832 ... 0.808209 1.338905 6.004044 -2.884664 -2.902912 -7.842923 -3.004160 -9.505475 -6.323909 -5.257099
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
1340502 660502 -205.884101 -469.854125 -276.516593 -337.413650 64.0 51.543062 28.616890 -51.249976 -889.354393 ... 0.828646 1.416286 6.862051 -3.083856 -3.183658 -7.822395 -2.781144 -9.488013 -7.951804 -4.955434
1341855 661855 -207.301540 -476.570404 -285.282273 -345.539779 64.0 51.916430 26.966473 -48.636717 -879.766094 ... 0.700506 1.375347 6.773190 -3.480788 -3.330016 -8.092852 -2.855230 -9.594161 -6.957108 -4.554232
1341859 661859 -191.917555 -445.414100 -262.442672 -324.556842 64.0 55.640321 23.022150 -54.633675 -827.949163 ... 0.644074 1.618245 6.602214 -2.625342 -2.754459 -7.731313 -2.893816 -9.541954 -5.949970 -3.979319
1342327 662327 -199.837023 -472.956615 -275.112710 -336.920539 64.0 51.495370 29.090792 -46.892291 -861.948317 ... 0.760992 1.476715 6.868137 -3.019520 -2.492714 -6.715591 -2.294386 -10.150571 -7.072605 -4.751528
1342599 662599 -203.866080 -456.882287 -272.057152 -334.469023 64.0 52.717204 29.727877 29.115464 -885.498042 ... 1.199228 1.179451 7.236475 -2.522645 -1.320499 -7.074366 -2.294382 -8.828913 -6.235548 -5.411170
1346722 666722 -208.678243 -477.299139 -283.817619 -344.939231 64.0 50.192387 26.684197 -0.276351 -859.929820 ... 0.651734 1.315064 6.931953 -3.287832 -2.606630 -6.412127 -3.875591 -10.964167 -7.596346 -6.156411
1346786 666786 -219.612550 -474.142454 -291.813655 -350.469346 64.0 50.912611 24.585578 -5.414090 -885.405155 ... 0.711933 1.306769 5.954503 -3.127714 -2.607291 -5.797559 -2.795849 -9.648209 -6.980555 -3.748121
1347665 667665 -209.302312 -482.173841 -283.817162 -347.027844 64.0 53.568770 27.958191 52.988044 -899.516240 ... 0.735999 1.500053 7.421782 -2.519915 -1.401032 -7.166064 -2.579434 -9.332978 -5.698527 -5.269535
1347673 667673 -209.335108 -485.633626 -282.814152 -346.105069 64.0 53.462038 24.286901 52.503938 -895.602503 ... 0.543466 1.456648 6.722428 -2.921238 -1.630212 -8.412987 -3.033527 -9.733973 -7.369211 -4.806117
1347675 667675 -199.442674 -465.053370 -274.107382 -333.359745 64.0 50.693402 27.606268 36.141424 -842.439055 ... 0.596913 1.693883 6.537367 -2.863791 -1.862606 -8.494871 -2.559573 -10.652349 -6.193468 -5.575977
1347761 667761 -203.047130 -452.211243 -272.958315 -329.153664 64.0 50.372456 20.814151 44.317699 -806.107706 ... 0.768161 2.142044 7.106839 -2.615475 -2.252133 -8.540469 -2.493415 -9.779415 -5.553201 -2.843740
1348639 668639 -201.799372 -468.654041 -274.710422 -337.450164 64.0 51.796515 29.688571 50.850550 -768.212373 ... 0.736149 2.121493 7.417731 -2.804386 -3.164273 -7.425796 -3.063990 -10.203311 -4.204367 -4.087167
1349061 669061 -207.662951 -466.837717 -279.496091 -339.192443 64.0 50.397917 27.598130 48.713370 -877.820446 ... 0.691969 1.610318 7.033297 -2.718223 -0.741366 -8.338038 -2.435304 -10.246608 -5.744684 -5.319991
1349095 669095 -213.562708 -460.291963 -284.793545 -340.245881 64.0 50.364801 32.175589 39.052282 -824.192549 ... 1.106522 1.773760 8.124241 -2.934181 -2.178386 -5.316895 -4.216987 -8.337428 -4.423655 -5.406511
1349227 669227 -203.856160 -468.005043 -279.832120 -342.408585 64.0 50.338463 28.163047 46.756750 -786.730791 ... 0.870998 0.887533 6.080038 -3.180166 -3.515929 -5.710454 -3.517812 -9.098677 -5.267704 -5.609394
1349449 669449 -215.648793 -471.627836 -284.377176 -339.144932 64.0 50.211922 28.101206 -27.298775 -875.536867 ... 0.900067 1.323994 6.371893 -2.979806 -3.552422 -6.062659 -3.677603 -8.774480 -4.305138 -4.334780
1349519 669519 -202.915015 -460.783397 -273.907380 -333.515731 64.0 50.314952 25.113563 -0.147615 -816.981914 ... 0.821370 1.055017 6.512296 -2.561262 -0.647578 -6.825956 -2.972068 -10.383707 -7.913963 -6.098133
1349585 669585 -200.255486 -466.271279 -273.808962 -334.431404 64.0 50.837057 26.446370 -13.898113 -870.760941 ... 0.918209 1.167727 7.122068 -3.121066 1.989498 -6.157802 -4.042456 -9.452070 -7.008031 -4.661203
1349615 669615 -206.910127 -465.948203 -283.523881 -342.968944 64.0 51.040223 25.493702 -25.045187 -818.676163 ... 0.726084 1.371648 6.360988 -3.394002 -2.364919 -7.738153 -3.662333 -11.011239 -5.179847 -5.583625
1349857 669857 -203.117880 -462.086163 -279.317440 -337.000598 64.0 52.310687 30.127791 -50.671290 -812.820838 ... 0.726998 1.496820 6.548572 -2.930834 -1.873408 -6.728547 -4.237735 -9.161641 -7.478702 -4.641489
1360108 680108 -205.069353 -462.711531 -280.960323 -343.561581 58.0 50.236463 27.281821 50.167577 -810.742208 ... 0.773921 1.395954 7.262947 -2.585416 -0.161851 -5.606836 -4.311653 -10.035364 -5.849221 -6.159697
1361095 681095 -198.383166 -457.790822 -274.056868 -332.888421 58.0 51.222749 30.463479 36.101032 -780.672889 ... 0.827646 1.581125 6.834347 -3.180894 -2.706407 -6.804406 -3.780691 -10.547629 -6.026383 -5.428277
1361376 681376 -201.869322 -449.733773 -272.493567 -334.316732 58.0 52.350548 26.053590 42.167270 -784.600417 ... 0.854357 1.452925 6.409710 -3.212957 -3.743113 -7.620278 -3.923153 -8.884580 -2.111910 -3.599623
1362896 682896 -203.841178 -459.913693 -282.408168 -343.290392 58.0 50.807028 26.695978 -22.568955 -802.704406 ... 0.837461 0.935380 6.238269 -2.727327 -2.946176 -6.231616 -4.065081 -9.184284 -1.979057 -5.326736
1366356 686356 -204.541179 -455.470918 -274.877853 -332.999177 58.0 50.878205 26.935738 -45.588308 -815.757265 ... 0.624655 2.013541 7.397408 -2.659078 -1.861358 -7.768260 -1.244884 -9.308436 -8.569076 -4.324747
1367759 687759 -204.850911 -469.737120 -282.116271 -340.667593 58.0 50.558771 28.263699 25.465682 -850.457091 ... 0.597299 2.145414 7.737049 -3.038362 -2.809183 -8.568667 -3.740509 -10.522502 -8.728294 -4.329358
1369012 689012 -204.892962 -469.528670 -278.131635 -337.158650 58.0 51.090326 27.230346 25.281401 -811.525017 ... 0.699752 2.020283 8.633153 -3.162411 -4.897628 -8.085425 -1.993458 -8.899556 -6.508886 -4.071063
1369264 689264 -206.438608 -468.136138 -275.529533 -335.604127 58.0 50.143470 28.469451 26.657969 -829.752702 ... 0.485471 2.031358 6.621705 -2.604477 -0.115203 -5.425334 -2.358879 -10.304723 -10.153452 -4.995169
1369486 689486 -186.994671 -417.664119 -241.196922 -300.534501 58.0 53.013559 28.538203 52.722399 -682.820481 ... 1.109016 1.172991 7.160349 -3.243724 -2.897164 -9.893152 -5.603207 -10.508676 -7.474262 -6.455674
1369510 689510 -184.971977 -410.810933 -239.202005 -297.116157 58.0 52.707034 31.208709 52.512279 -727.388440 ... 1.298493 1.200276 6.244463 -3.168358 -1.646690 -7.197175 -6.412059 -10.390096 -4.543224 -6.917837

963 rows × 50 columns


In [96]:
data.query("TempT == 373 and DisReal > 50 \
           and DisReal < 63 and z_average < -2.5 and z_average > -3.5").shape


Out[96]:
(2764, 50)

In [98]:
data.query("TempT != 417 and DisReal > 50 \
           and DisReal < 63 and z_average < -2.5 and z_average > -3.5").shape


Out[98]:
(6754, 50)

In [ ]:
data.query("TempT == 373 and DisReal > 60 \
           and DisReal < 63 and z_average < -2.5 and z_average > -3.5").shape

is what I want significant?

lower bound 50 is kind of ok. about the same as native


In [104]:
t = data.query("TempT != 417 and DisReal > 50 \
           and DisReal < 63 and z_average < -2.5 and z_average > -3.5").\
        query("Lipid1 < -0.5")
t = t.reset_index(drop=True)
t["BiasedEnergy"] = t["TotalE"] + 0.2*t["AMH_4H"]

In [106]:
t.sort_values("BiasedEnergy").head().to_csv("/Users/weilu/Research/data/selected_all.csv")

In [112]:
tt = t.sort_values("BiasedEnergy").drop("level_0", axis=1).reset_index(drop=True).reset_index()

In [122]:
tt.query("Qw < 0.5 and Qw > 0.4").to_csv("/Users/weilu/Research/data/constrain_qw.csv")

In [ ]:


In [117]:
tt.plot.scatter("level_0", "Qw")


Out[117]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a175ece80>

In [126]:
tt.plot.hexbin("DisReal", "BiasedEnergy", cmap="seismic", sharex=False)


Out[126]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a17e236a0>

In [125]:
tt.plot.hexbin("Qw", "BiasedEnergy", cmap="seismic", sharex=False)


Out[125]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a17545278>

Based on Qw is also about the same


In [132]:
tt.query("TempT == 373").query("Qw < 0.5 and Qw > 0.4")\
    .to_csv("/Users/weilu/Research/data/constrain_qw_temp.csv")

In [131]:
tt.query("TempT == 373").query("Qw < 0.5 and Qw > 0.4").sort_values("DisReal")


Out[131]:
level_0 AMH AMH-Go AMH_3H AMH_4H BiasTo DisReal Dis_h56 Distance Energy ... rg6 rg_all z_average z_h1 z_h2 z_h3 z_h4 z_h5 z_h6 BiasedEnergy
3762 3762 -192.104617 -432.101557 -253.422250 -314.241610 60.0 50.012939 26.367561 40.206246 -683.583976 ... 0.894607 6.050583 -3.087847 -3.102997 -7.965673 -5.087159 -10.899809 -5.492458 -6.760871 -756.436435
3481 3481 -196.011497 -426.625812 -255.474504 -311.813975 50.0 50.516714 28.010989 27.223156 -706.016586 ... 1.391637 6.549280 -2.945832 -3.367906 -8.306703 -5.658531 -10.018248 -1.869354 -5.118978 -776.540971
3068 3068 -193.807835 -444.256472 -264.910251 -326.597502 62.0 50.529089 23.796452 50.525372 -732.839541 ... 1.290359 6.767304 -2.512858 -0.977001 -6.081578 -3.712467 -11.453116 -4.195051 -5.340472 -806.083375
3228 3228 -190.181418 -436.068786 -263.456637 -317.231977 52.0 50.668621 28.491077 17.558503 -720.496457 ... 1.340836 6.851482 -2.620015 -1.057355 -8.376747 -2.716558 -8.917654 -5.413605 -4.617434 -792.264722
3498 3498 -191.417784 -440.037684 -256.510969 -313.163768 64.0 50.678416 27.946408 -40.103463 -703.603857 ... 1.228067 6.738715 -2.511569 -0.170443 -7.787214 -4.574718 -9.987960 -8.524303 -6.302716 -775.410661
2903 2903 -203.836127 -445.618693 -276.351334 -333.831674 58.0 50.909585 33.183624 50.204235 -744.846772 ... 1.965327 7.075568 -2.986687 0.005305 -6.390884 -3.507941 -9.379979 -10.576380 -4.825714 -820.728653
2930 2930 -204.417779 -442.174328 -277.635628 -333.484835 60.0 50.928444 32.604850 -46.833264 -743.557620 ... 1.637943 6.962802 -3.076495 -3.262567 -7.645491 -5.849649 -11.154881 -3.855719 -8.013397 -818.577809
3244 3244 -193.363828 -428.314917 -260.948997 -315.756406 54.0 51.131521 25.275756 22.250747 -718.438630 ... 1.354523 6.001116 -2.643060 0.539037 -6.971980 -6.641535 -11.133095 -3.268829 -6.755621 -791.186962
3551 3551 -186.901870 -416.216919 -253.149599 -305.404728 60.0 51.490177 25.847866 3.248905 -701.577611 ... 1.533020 6.762323 -2.746508 -2.682997 -5.874521 -3.351435 -10.457261 -9.276889 -5.002982 -772.201456
2870 2870 -196.469346 -430.835950 -258.066898 -313.598979 54.0 51.711936 23.486991 43.789804 -750.340328 ... 1.521470 7.705958 -3.355514 -2.399803 -7.320083 -3.876052 -9.448349 -7.370891 -4.908992 -823.190003
3385 3385 -190.622634 -429.710199 -255.433344 -311.335614 64.0 52.075979 27.559302 51.835416 -710.882528 ... 1.596582 6.689784 -2.994284 -2.047678 -8.935165 -1.855283 -9.633210 -10.367567 -4.468829 -782.406273
3233 3233 -186.799105 -429.906594 -255.025388 -306.321808 60.0 52.362600 27.765552 30.440628 -721.215153 ... 1.242505 6.847517 -2.982997 -2.580666 -8.354766 -5.626424 -9.788451 -8.851859 -5.437784 -792.065983
3066 3066 -205.157633 -433.465437 -269.038035 -324.108762 56.0 52.451007 29.848221 -32.446541 -733.918310 ... 1.885147 6.613572 -3.137813 -1.195060 -7.596211 -5.401856 -11.538042 -6.007125 -5.237796 -806.348187
2859 2859 -195.851207 -449.011318 -268.613815 -326.142766 62.0 52.682999 25.858960 -47.213356 -750.402869 ... 1.725628 6.792679 -2.787078 -0.595273 -7.335675 -2.680927 -9.719975 -7.752656 -3.796941 -824.398665
3163 3163 -184.971977 -410.810933 -239.202005 -297.116157 58.0 52.707034 31.208709 52.512279 -727.388440 ... 1.200276 6.244463 -3.168358 -1.646690 -7.197175 -6.412059 -10.390096 -4.543224 -6.917837 -796.886373
3409 3409 -187.797700 -426.716210 -252.877868 -303.332431 60.0 52.967907 25.242230 -0.555833 -713.184480 ... 1.726105 6.853609 -2.540259 -1.488719 -5.879972 -2.761710 -10.478187 -8.980456 -4.794005 -780.663110
2963 2963 -198.020512 -443.474827 -269.014505 -321.969920 64.0 53.023494 27.432723 -34.945757 -744.465791 ... 1.061111 6.026903 -2.911636 -1.049888 -6.909145 -3.314436 -9.752196 -7.131799 -6.503375 -815.380862
3429 3429 -196.954447 -437.587015 -263.244392 -319.249998 62.0 53.026542 27.345927 -52.334388 -708.869921 ... 1.137479 5.909306 -3.145507 -2.710075 -8.419362 -5.206515 -10.126986 -3.147174 -5.632754 -779.512242
3026 3026 -190.498420 -443.652830 -257.662046 -318.700280 58.0 53.046061 28.724509 -33.880809 -738.634661 ... 1.425895 6.539086 -2.812719 -3.173485 -7.270606 -4.122717 -10.142538 -7.249292 -5.623374 -810.433506
2849 2849 -191.103667 -444.322892 -256.814533 -314.860933 62.0 53.114731 27.603569 15.892985 -753.679333 ... 1.147918 6.302167 -3.044294 0.759810 -8.126233 -3.419334 -12.026384 -6.920865 -6.373408 -824.839564
3111 3111 -191.946999 -420.779853 -261.841588 -322.197433 52.0 53.311645 25.615088 -28.245318 -725.848342 ... 1.753923 9.211358 -2.843699 -4.977138 -5.711322 -5.693465 -9.169188 -2.864024 -5.528937 -801.066986
3253 3253 -187.588502 -413.967552 -250.666059 -304.309152 56.0 53.318146 26.884688 25.192405 -720.160155 ... 1.214587 7.881936 -3.318964 -6.215218 -8.652260 -2.737998 -8.502545 -7.635170 -6.867371 -790.738729
3118 3118 -190.039537 -437.135577 -257.466716 -315.092631 58.0 53.545561 22.340685 20.956969 -727.936407 ... 1.510644 6.610011 -2.914982 -0.763932 -8.599944 -4.850105 -10.102906 -6.425070 -5.064343 -800.598152
2906 2906 -189.706550 -440.215827 -262.580047 -323.399611 58.0 53.583351 25.305305 -34.380529 -745.130205 ... 1.139749 6.796784 -2.641423 -0.894295 -7.182139 -3.126162 -10.003438 -9.080511 -6.398923 -820.496644
2855 2855 -196.168359 -447.229231 -265.211032 -326.763035 60.0 53.676930 27.342816 -34.210306 -750.789683 ... 1.167376 7.853244 -3.297989 -1.266613 -6.748556 -5.284507 -8.367167 -6.775813 -3.702166 -824.684631
3225 3225 -186.839341 -430.600295 -253.410878 -312.060085 64.0 53.917537 27.787158 -45.439470 -719.941011 ... 2.015881 6.637509 -2.675955 -4.131431 -8.287738 -2.385045 -9.457775 -7.309770 -4.207245 -792.460848
3165 3165 -183.967038 -431.063001 -257.155166 -312.250486 62.0 54.780357 27.099532 -54.694381 -725.794997 ... 0.827617 7.085782 -2.904514 -3.278521 -8.081761 -3.735775 -8.061566 -5.888971 -5.369750 -796.624905
3008 3008 -196.127665 -442.840784 -261.217753 -321.300337 64.0 56.697736 25.426562 -19.073524 -737.757880 ... 1.519259 7.119540 -3.161667 -2.723863 -7.855857 -2.549721 -9.593914 -10.662663 -5.670904 -811.862553
3063 3063 -195.630242 -435.155569 -256.611899 -309.100543 64.0 58.183612 19.117130 53.955815 -736.440977 ... 1.423229 5.543619 -3.372721 -1.120181 -6.685898 -4.955295 -10.356982 -8.509524 -4.613997 -806.479888
3131 3131 -193.264620 -432.867410 -262.231255 -319.094199 64.0 58.600919 26.562725 -39.499154 -728.018780 ... 2.024190 7.469871 -3.195907 -3.636113 -5.186055 -2.285889 -9.187340 -8.547995 -3.866942 -799.467778

30 rows × 51 columns

base on energy


In [135]:
t.query("TempT == 373").plot.hexbin("Qw", "BiasedEnergy", cmap="seismic", sharex=False)


Out[135]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a18f5e5f8>

In [139]:
t.query("TempT == 373").plot.hexbin("z_average", "TotalE", cmap="seismic", sharex=False)


Out[139]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a1b0b8588>

In [138]:
t.query("TempT == 373").plot.hexbin("DisReal", "TotalE", cmap="seismic", sharex=False)


Out[138]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a18967ac8>

In [ ]:
data.query("TempT != 417 and DisReal > 50 \
           and DisReal < 63 and z_average < -2.5 and z_average > -3.5").\
        query("Lipid1 < -0.5").to_csv("/Users/weilu/Research/data/selected_all.csv")

In [99]:
data.query("TempT != 417 and DisReal > 50 \
           and DisReal < 63 and z_average < -2.5 and z_average > -3.5").\
        query("Lipid1 < -0.5").plot.hexbin("Lipid7", "TotalE", cmap="seismic", sharex=False)


Out[99]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a16a8e6d8>

In [101]:
data.query("TempT != 417 and DisReal > 50 \
           and DisReal < 63 and z_average < -2.5 and z_average > -3.5").\
        query("Lipid1 < -0.5 and Lipid7 <  -0.5").hist("TotalE",bins=50)


Out[101]:
array([[<matplotlib.axes._subplots.AxesSubplot object at 0x1a174053c8>]], dtype=object)

In [102]:
data.query("TempT != 417 and DisReal > 50 \
           and DisReal < 63 and z_average < -2.5 and z_average > -3.5").\
        query("Lipid1 < -0.5 and Lipid7 >  -0.5").hist("TotalE",bins=50)


Out[102]:
array([[<matplotlib.axes._subplots.AxesSubplot object at 0x1a197a4e48>]], dtype=object)

In [ ]:


In [ ]:


In [29]:
sample = t373_narrow.sample(5).reset_index(drop=True)

In [43]:
rerun = (sample["Step"] // 2e7).astype(int)

In [ ]:
((sample["Step"] - 2e7*rerun)/4000).astype("int")

In [46]:
(sample["Step"] % 2e7)/4000


Out[46]:
0    2009.0
1     105.0
2    4964.0
3    2068.0
4    4465.0
Name: Step, dtype: float64

In [32]:
sample["Step"]


Out[32]:
0    68036000
1    60420000
2    79856000
3    68272000
4    77860000
Name: Step, dtype: int64

In [30]:
sample["Run"]


Out[30]:
0    1
1    1
2    3
3    5
4    1
Name: Run, dtype: int64

In [ ]:
cmd_pre = "python2 ~/opt/script/BuildAllAtomsFromLammps.py"
location_pre = "/Users/weilu/Research/server/apr_2018/sixth/rg_0.15_lipid_1.0_mem_1_go_0.8/simulation"
# cmd = cmd_pre + " " + location + " structure_2 4080 -seq ~/opt/pulling/2xov.seq"
# tt = pd.read_csv("/Users/weilu/Research/server/barrier.csv", index_col=0)
# tt = pd.read_csv("/Users/weilu/Research/server/high_go.csv", index_col=0)
tt = pd.read_csv("/Users/weilu/Research/server/rerun3.csv", index_col=0)
# rerun = 1
sample = tt.sample(5).reset_index(drop=True)
# sample["Frame"] = ((sample["Step"] - 2e7*rerun)/4000).astype("int")
sample["rerun"] = (sample["Step"] // 2e7).astype(int)
sample["Frame"] = ((sample["Step"] % 2e7)/4000).astype("int")
for index, row in sample.iterrows():
    BiasTo = row["BiasTo"]
    Run = row["Run"]
    Frame = row["Frame"]
    rerun = row["rerun"]
    print(BiasTo, Run, Frame)

    location = location_pre + f"/dis_{BiasTo}/{rerun}/dump.lammpstrj.{int(Run)}"
    cmd = cmd_pre + " " + location + f" structure_{index} {int(Frame)} -seq ~/opt/pulling/2xov.seq"
    print(cmd)
    do(cmd)

In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]: