In [2]:
import os
import sys
import random
import time
from random import seed, randint
import argparse
import platform
from datetime import datetime
import imp
import numpy as np
import fileinput
from itertools import product
import pandas as pd
from scipy.interpolate import griddata
from scipy.interpolate import interp2d
import seaborn as sns
from os import listdir

import matplotlib.pyplot as plt
import seaborn as sns
from scipy.interpolate import griddata
import matplotlib as mpl
sys.path.insert(0,'..')
from notebookFunctions import *
# from .. import notebookFunctions

%matplotlib inline
plt.rcParams['figure.figsize'] = (10,6.180)    #golden ratio
# %matplotlib notebook
%load_ext autoreload
%autoreload 2

In [10]:
data = pd.read_feather("/Users/weilu/Research/server/may_2018/second/rerun_7_19_May_155517.feather")
dic = {"T0":300, "T1":335, "T2":373, "T3":417, "T4":465, "T5":519, "T6":579, "T7":645, "T8":720, "T9":803, "T10":896, "T11":1000}
a = data
a["Temp"] = a["Temp"].apply(lambda x: dic[x])
rerun7 = data
t = a.query("Temp < 400").groupby(["BiasTo","Temp"])[["DisReal","Run"]].mean().reset_index()
t["Diff"] = t["DisReal"]-t["BiasTo"].apply(pd.to_numeric)
t["BiasTo"] = t["BiasTo"].apply(pd.to_numeric)
fg = sns.FacetGrid(data=t, hue='Temp', size=8, aspect=1.61)
fg.map(plt.scatter, 'BiasTo', 'Diff').add_legend()


Out[10]:
<seaborn.axisgrid.FacetGrid at 0x108fd0fd0>

In [18]:
rerun7 = pd.read_feather("/Users/weilu/Research/server/may_2018/second/rerun_7_19_May_155517.feather")
rerun6 = pd.read_feather("/Users/weilu/Research/server/may_2018/second/rerun_6_19_May_155517.feather")
data = pd.concat([rerun6, rerun7])
dic = {"T0":300, "T1":335, "T2":373, "T3":417, "T4":465, "T5":519, "T6":579, "T7":645, "T8":720, "T9":803, "T10":896, "T11":1000}
data["TempT"] = data["Temp"].apply(lambda x: dic[x])
chosen = data.query("TempT < 420")
chosen.reset_index().to_feather("/Users/weilu/Research/server/may_2018/03_week/all_data_folder/second_may19.feather")

In [19]:
data


Out[19]:
Step Run Temp Qw Energy DisReal Dis_h56 z_average abs_z_average z_h1 ... Lipid9 Lipid10 Lipid11 Lipid12 Lipid13 Lipid14 Lipid15 TotalE BiasTo TempT
0 60004000 0 T2 0.361442 -692.687622 77.046868 26.215912 -2.513710 11.488407 0.375505 ... -1.292972e-01 -1.472231e+00 6.238685e-01 -1.996401e+00 -1.990863e+00 -2.079433e+00 -1.030879e+00 -704.247823 86.0 373
1 60004000 1 T7 0.084696 117.428716 75.793012 28.910414 -12.484134 18.617278 -3.484687 ... 2.543031e-06 8.120827e-09 1.836534e-02 3.999502e-07 3.762494e-08 3.750287e-13 1.066903e-03 117.532808 86.0 645
2 60004000 2 T1 0.345007 -808.102116 78.914281 27.413183 -2.760546 11.528093 -1.810742 ... -4.658574e-02 -1.358007e+00 7.927386e-01 -2.127075e+00 -1.501601e+00 -2.023053e+00 -4.441028e-02 -817.088891 86.0 335
3 60004000 3 T11 0.070248 868.525511 73.251730 54.713257 -21.830116 26.844421 -3.044188 ... 2.105133e-08 3.324049e-19 6.079847e-17 1.074104e-12 2.890699e-24 3.117602e-22 2.203744e-15 868.989110 86.0 1000
4 60004000 4 T4 0.104841 -431.602509 70.760834 42.980847 -5.989599 12.942974 0.028866 ... 6.088306e-04 7.337725e-01 2.076297e-03 2.104214e-03 7.233198e-01 6.115195e-04 3.724863e-03 -431.372725 86.0 465
5 60004000 5 T6 0.096252 -118.778565 80.264645 41.543846 -14.582374 18.951240 -3.014771 ... 2.618959e-07 3.276511e-09 3.571051e-07 7.076448e-10 4.774660e-08 7.870433e-13 7.861946e-06 -118.775759 86.0 579
6 60004000 6 T3 0.177222 -611.269735 69.673122 43.789774 -6.196710 12.440136 -1.848689 ... 9.780533e-06 8.098067e-01 4.931411e-03 1.000435e-05 -1.431257e+00 9.656717e-06 3.840821e-03 -616.223669 86.0 417
7 60004000 7 T9 0.079159 502.719430 90.542442 48.972493 -1.004979 14.240476 -2.544518 ... 1.049238e-06 3.807749e-03 4.266020e-03 3.333872e-08 2.881865e-01 7.683072e-07 8.997055e-05 503.779779 86.0 803
8 60004000 8 T8 0.066973 429.184717 72.528998 42.565286 -14.743776 22.376503 -3.063430 ... 4.314501e-08 4.006754e-13 2.839561e-09 1.414548e-12 1.256563e-11 7.391908e-16 5.640840e-07 429.247934 86.0 720
9 60004000 9 T5 0.090009 -306.460609 77.083008 46.870793 -8.443271 15.968404 -1.960514 ... 1.609675e-03 1.017551e-09 1.347129e-07 1.346033e-07 1.255617e-06 7.002001e-07 4.427866e-01 -306.008770 86.0 519
10 60004000 10 T10 0.073574 755.334685 88.453311 60.058718 -15.283988 22.364668 -3.188556 ... 2.855579e-08 1.563437e-09 2.595950e-07 4.673508e-10 2.385993e-12 5.161218e-15 8.830665e-13 755.960977 86.0 896
11 60004000 11 T0 0.365321 -816.634353 81.426887 27.290382 -2.639839 11.007443 0.378911 ... 2.861637e-02 -1.313226e+00 5.916728e-01 -2.073420e+00 -1.760757e+00 -2.032702e+00 -6.311750e-01 -827.057348 86.0 300
12 60008000 0 T2 0.392508 -698.237107 84.641804 28.340007 -1.902340 11.010552 -0.608567 ... 1.242417e-01 -1.530055e+00 3.961864e-01 -1.914226e+00 -1.934116e+00 -2.100610e+00 -3.386718e-01 -709.950581 86.0 373
13 60008000 1 T7 0.086099 75.709629 87.972307 41.536431 -12.817917 18.468553 -5.014352 ... 7.031034e-08 5.866403e-09 1.743900e-05 6.272712e-10 3.951496e-07 6.714271e-14 1.772613e-05 75.988168 86.0 645
14 60008000 2 T1 0.358961 -783.079676 76.058530 27.347157 -2.146555 10.810279 -2.100331 ... -1.757550e-01 -1.294344e+00 5.821442e-01 -2.066353e+00 -2.028006e+00 -2.119672e+00 -1.019467e+00 -794.626743 86.0 335
15 60008000 3 T11 0.064233 910.225969 85.128056 65.955566 -22.019974 26.757358 -7.023933 ... 2.313019e-09 4.923583e-20 1.062804e-16 1.606586e-15 4.604615e-21 2.898408e-22 2.512708e-16 910.646649 86.0 1000
16 60008000 4 T4 0.110923 -438.541180 78.469364 36.483444 -6.068544 12.619928 -3.695398 ... 1.421921e-06 7.701274e-01 2.887172e-02 4.402059e-04 6.557796e-01 1.423723e-06 5.134204e-04 -437.240421 86.0 465
17 60008000 5 T6 0.094366 -121.277682 91.558756 54.153788 -13.722860 18.342500 -4.736118 ... 4.124939e-08 1.109614e-07 2.598432e-06 1.167100e-10 2.541275e-05 9.837681e-12 8.380261e-06 -121.272648 86.0 579
18 60008000 6 T3 0.161803 -595.417788 78.434112 43.968265 -5.506756 12.866359 -1.000786 ... 3.322952e-05 6.800233e-01 1.902482e-03 3.070733e-05 -2.070120e+00 3.344889e-05 8.460521e-03 -599.615836 86.0 417
19 60008000 7 T9 0.079984 540.304420 82.203929 55.953212 -0.617372 14.003750 -4.804560 ... 6.189533e-08 3.677421e-03 3.896319e-02 4.081759e-09 5.807484e-01 5.467493e-08 6.190334e-08 541.500173 86.0 803
20 60008000 8 T8 0.067585 402.713559 88.759034 58.706206 -14.065932 21.304829 -4.725554 ... 2.433827e-08 7.357662e-14 6.460437e-10 8.746566e-15 8.111932e-09 9.670892e-15 2.053777e-07 403.152906 86.0 720
21 60008000 9 T5 0.089791 -378.660101 87.684704 48.207171 -9.073686 15.906922 -4.152763 ... 1.553620e-03 4.294135e-10 1.827954e-08 1.746666e-08 2.911693e-05 2.938575e-04 1.105302e-01 -378.540351 86.0 519
22 60008000 10 T10 0.074861 728.117501 88.673185 69.856524 -14.992706 22.251827 -4.118302 ... 6.682253e-09 3.550430e-10 6.396226e-08 1.186853e-12 1.445236e-09 2.506130e-14 4.323946e-12 728.803553 86.0 896
23 60008000 11 T0 0.389072 -854.854605 75.671675 25.811388 -1.764422 10.666315 0.583521 ... -3.609554e-01 -1.273055e+00 2.878458e-01 -2.114398e+00 -2.096966e+00 -2.112741e+00 -1.150649e+00 -867.905722 86.0 300
24 60012000 0 T2 0.342908 -749.615666 74.876910 25.385569 -1.017174 10.443986 0.798023 ... 3.290917e-01 -1.551065e+00 4.826563e-01 -2.141760e+00 -2.000027e+00 -2.154275e+00 -4.013643e-01 -759.822502 86.0 373
25 60012000 1 T7 0.086520 95.040425 77.777553 48.697574 -11.069034 17.348884 -1.296694 ... 7.193274e-06 4.554899e-07 1.539512e-05 5.667732e-08 6.338203e-05 1.657409e-07 2.609635e-03 95.223490 86.0 645
26 60012000 2 T1 0.363259 -804.228194 79.944041 23.494465 -1.139558 10.231718 0.355296 ... -1.011025e-01 -1.594634e+00 6.339107e-01 -2.118546e+00 -1.979954e+00 -2.153317e+00 -8.755844e-01 -815.783371 86.0 335
27 60012000 3 T11 0.062706 909.620710 83.019558 67.726559 -20.623317 25.682674 -6.632328 ... 1.169335e-07 1.420507e-19 7.066895e-17 9.182887e-15 8.431761e-19 2.643678e-19 5.459340e-14 909.910131 86.0 1000
28 60012000 4 T4 0.120265 -501.989050 80.232044 31.816246 -5.845984 12.521787 -1.865947 ... 3.709126e-05 7.650472e-01 8.094128e-02 2.283044e-03 5.648656e-01 9.313779e-06 2.257911e-03 -500.519779 86.0 465
29 60012000 5 T6 0.097948 -78.122309 80.402859 52.571337 -11.497987 17.398943 -1.495495 ... 2.504192e-06 2.375769e-07 3.374073e-07 4.359666e-10 1.733270e-03 3.155074e-07 9.306005e-05 -78.114269 86.0 579
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
1079970 79992000 6 T4 0.100194 -471.501109 110.106716 32.042169 -17.267038 22.835375 -3.091710 ... 2.685837e-04 8.531332e-19 7.966106e-15 1.195925e-10 1.262812e-17 1.944947e-15 -4.425406e-07 -470.912529 102.0 465
1079971 79992000 7 T0 0.343627 -890.654006 100.278070 22.059778 -1.495027 10.496775 -1.889176 ... 8.946998e-02 -1.230916e+00 1.584610e-01 -2.047411e+00 -1.888275e+00 -2.114043e+00 -6.012994e-01 -902.450177 102.0 300
1079972 79992000 8 T11 0.056088 855.458972 102.219960 31.301283 -15.017317 17.362802 -7.674645 ... 1.943435e-03 4.926391e-16 8.668779e-10 8.693798e-10 7.214757e-12 7.235579e-12 8.044358e-02 855.549390 102.0 1000
1079973 79992000 9 T7 0.073067 94.643470 110.030418 41.832058 -14.970616 19.218267 -4.041433 ... 6.687838e-05 1.702938e-16 3.056797e-09 8.270705e-09 4.365331e-13 6.032368e-12 2.123476e-02 94.670943 102.0 645
1079974 79992000 10 T5 0.089354 -280.064429 105.716751 12.180958 -10.652974 17.401865 -3.131265 ... 2.081275e-03 1.033839e-14 5.417496e-09 5.426192e-09 1.705628e-09 1.305940e-11 -2.014514e+00 -282.068530 102.0 519
1079975 79992000 11 T8 0.068158 414.943697 98.232736 38.944204 0.107372 15.350020 -17.074083 ... 2.058400e-04 1.945221e-05 7.417017e-06 7.383907e-07 -6.129534e-01 1.476225e-02 7.582283e-02 414.427490 102.0 720
1079976 79996000 0 T2 0.347575 -749.949139 96.031979 26.280834 -1.709614 10.438860 -1.889524 ... -1.454592e-01 -1.382949e+00 4.379496e-01 -2.156586e+00 -1.997220e+00 -2.139459e+00 -7.677556e-01 -761.956096 102.0 373
1079977 79996000 1 T9 0.060220 498.747140 104.776851 51.632260 1.423204 15.756315 -18.469371 ... 2.736895e-06 3.030513e-03 3.365241e-04 1.134475e-07 7.044176e-02 2.802601e-07 2.940032e-06 498.851221 102.0 803
1079978 79996000 2 T1 0.379351 -801.878348 89.352130 26.501929 -2.116905 10.690809 -1.456958 ... -2.764184e-01 -1.749413e+00 3.262589e-01 -2.166864e+00 -2.109088e+00 -2.145488e+00 -6.099769e-01 -815.223468 102.0 335
1079979 79996000 3 T3 0.106617 -553.126973 104.293977 19.361344 -9.429993 16.369444 -3.103134 ... 1.995874e-03 5.615632e-11 6.775026e-08 6.740158e-08 2.966720e-06 9.836278e-07 -1.884546e+00 -554.545201 102.0 417
1079980 79996000 4 T6 0.075760 -141.767779 95.572511 26.783630 -11.707813 17.065939 -4.341568 ... 2.021592e-03 1.696294e-14 9.597677e-11 9.599019e-11 1.315979e-09 3.496879e-07 8.608212e-01 -140.896718 102.0 579
1079981 79996000 5 T10 0.062003 718.436371 94.355536 34.956967 -17.741111 18.110093 -18.452239 ... 1.862994e-03 1.955085e-13 4.241235e-11 4.330192e-11 5.818895e-08 2.109322e-05 5.292927e-01 718.969837 102.0 896
1079982 79996000 6 T4 0.100072 -414.074015 111.614127 25.288909 -18.304521 23.767795 -7.343674 ... 4.771426e-06 1.726759e-17 4.544036e-16 3.118056e-13 1.266990e-15 4.529601e-15 -1.660759e-08 -413.676957 102.0 465
1079983 79996000 7 T0 0.395375 -870.676086 91.820353 25.529091 -2.007328 10.110126 -1.380797 ... -4.179862e-01 -1.804047e+00 3.912165e-01 -2.164414e+00 -2.049024e+00 -2.155460e+00 -6.326052e-01 -884.256293 102.0 300
1079984 79996000 8 T11 0.074209 872.899565 105.144205 23.427566 -14.598361 15.951897 -16.465745 ... 1.984500e-03 8.429401e-13 1.218348e-08 1.217718e-08 4.977491e-08 4.873468e-06 8.219537e-01 873.727092 102.0 1000
1079985 79996000 9 T7 0.070345 145.582156 103.360813 50.188944 -15.499645 19.882589 -5.801023 ... 7.813577e-07 1.015455e-14 1.828950e-08 9.178933e-10 1.516937e-11 -1.666414e-12 8.529157e-06 145.588305 102.0 645
1079986 79996000 10 T5 0.090998 -337.824355 112.057049 18.250734 -10.747040 17.669667 -5.554454 ... 2.062304e-03 6.044891e-13 5.587605e-09 5.619478e-09 1.991482e-07 5.682440e-10 -1.049849e+00 -338.863869 102.0 519
1079987 79996000 11 T8 0.061809 322.397080 102.886157 54.721405 0.921792 17.010672 -20.111421 ... 4.286549e-06 3.463889e-05 9.904490e-07 2.093774e-09 1.215184e-01 7.873182e-07 8.168121e-05 322.521326 102.0 720
1079988 80000000 0 T2 0.326529 -732.767353 87.471225 25.817823 -2.570168 10.868463 -1.718925 ... -2.083879e-01 -1.204736e+00 7.720979e-01 -1.954150e+00 -1.252593e+00 -2.089169e+00 8.824986e-02 -742.237543 102.0 373
1079989 80000000 1 T9 0.058525 577.777033 87.258113 53.967260 1.109417 15.371869 -18.795844 ... 9.268840e-08 9.903924e-04 9.306337e-04 4.212000e-08 2.468951e-03 4.404138e-10 9.433264e-08 577.914658 102.0 803
1079990 80000000 2 T1 0.388617 -800.153161 87.966854 23.750570 -3.002874 11.029084 -1.402896 ... -1.222492e-01 -1.551479e+00 3.345365e-01 -2.124181e+00 -1.755690e+00 -2.028181e+00 -2.506075e-01 -812.324452 102.0 335
1079991 80000000 3 T3 0.111232 -522.071412 95.226065 21.651543 -10.150905 17.043262 -2.552638 ... 1.972178e-03 2.058399e-13 1.337603e-09 1.306713e-09 4.148193e-08 2.621380e-07 -1.488604e+00 -522.853916 102.0 417
1079992 80000000 4 T6 0.088702 -149.139095 87.547795 32.932078 -12.100498 17.808978 -5.355265 ... 1.953857e-03 2.422062e-15 5.684460e-12 5.665156e-12 3.087116e-09 1.175484e-06 5.874338e-01 -148.541623 102.0 579
1079993 80000000 5 T10 0.054846 737.028053 89.317691 45.503956 -17.770190 18.256920 -19.490797 ... 1.803577e-03 2.861165e-16 5.532659e-13 5.138827e-13 1.820728e-08 2.395883e-06 5.037878e-01 737.535772 102.0 896
1079994 80000000 6 T4 0.100293 -452.297963 94.503368 34.093899 -19.909865 25.215311 -9.177898 ... 3.156478e-06 9.257672e-20 1.610327e-20 1.148976e-15 1.698236e-16 1.356517e-12 -2.621316e-11 -452.443461 102.0 465
1079995 80000000 7 T0 0.362178 -887.570230 91.504540 25.315192 -2.644266 11.061115 -0.725797 ... -2.642344e-01 -1.424139e+00 3.831907e-01 -2.040830e+00 -1.455685e+00 -2.034184e+00 -1.433344e-01 -899.169851 102.0 300
1079996 80000000 8 T11 0.047204 888.437074 85.749587 33.101532 -15.185657 17.202026 -21.101692 ... 1.614930e-03 4.635643e-15 1.314501e-09 1.310633e-09 2.103053e-08 2.900400e-06 2.260299e-01 888.666387 102.0 1000
1079997 80000000 9 T7 0.069088 118.765636 92.705490 53.091484 -15.999481 21.082419 -6.301012 ... 1.853682e-07 1.073721e-16 3.469850e-11 1.842676e-12 4.392824e-09 -1.931398e-13 3.434767e-07 118.769785 102.0 645
1079998 80000000 10 T5 0.095022 -333.825950 95.501803 14.135654 -11.372822 18.037483 -3.309004 ... 2.036201e-03 5.566153e-15 5.532055e-11 5.481694e-11 2.067198e-07 2.193875e-08 -1.375118e+00 -335.190770 102.0 519
1079999 80000000 11 T8 0.066003 305.175629 90.160663 54.436968 0.926120 16.232124 -21.186431 ... 2.430889e-07 2.496354e-06 1.839993e-06 2.168326e-10 1.017428e-02 3.223105e-09 2.416226e-07 305.188549 102.0 720

2160000 rows × 48 columns


In [3]:
data = pd.read_feather("/Users/weilu/Research/server/may_2018/second/rerun_7_14_May_124103.feather")
dic = {"T0":300, "T1":335, "T2":373, "T3":417, "T4":465, "T5":519, "T6":579, "T7":645, "T8":720, "T9":803, "T10":896, "T11":1000}
a = data
a["Temp"] = a["Temp"].apply(lambda x: dic[x])
rerun7 = data
t = a.query("Temp < 400").groupby(["BiasTo","Temp"])[["DisReal","Run"]].mean().reset_index()
t["Diff"] = t["DisReal"]-t["BiasTo"].apply(pd.to_numeric)
t["BiasTo"] = t["BiasTo"].apply(pd.to_numeric)
fg = sns.FacetGrid(data=t, hue='Temp', size=8, aspect=1.61)
fg.map(plt.scatter, 'BiasTo', 'Diff').add_legend()


Out[3]:
<seaborn.axisgrid.FacetGrid at 0x108e90940>

In [54]:
rerun7.columnsmns


Out[54]:
Index(['Step', 'Run', 'Temp', 'Qw', 'Energy', 'DisReal', 'Dis_h56',
       'z_average', 'abs_z_average', 'z_h1', 'z_h2', 'z_h3', 'z_h4', 'z_h5',
       'z_h6', 'AMH', 'Distance', 'AMH-Go', 'Membrane', 'Rg', 'rg1', 'rg2',
       'rg3', 'rg4', 'rg5', 'rg6', 'rg_all', 'Lipid', 'Lipid1', 'Lipid2',
       'Lipid3', 'Lipid4', 'Lipid5', 'Lipid6', 'Lipid7', 'Lipid8', 'Lipid9',
       'Lipid10', 'Lipid11', 'Lipid12', 'Lipid13', 'Lipid14', 'Lipid15',
       'TotalE', 'BiasTo'],
      dtype='object')

In [60]:
data = pd.read_feather("/Users/weilu/Research/server/may_2018/second/rerun_6_10_May_222655.feather")
dic = {"T0":300, "T1":335, "T2":373, "T3":417, "T4":465, "T5":519, "T6":579, "T7":645, "T8":720, "T9":803, "T10":896, "T11":1000}
a = data
a["Temp"] = a["Temp"].apply(lambda x: dic[x])
rerun6 = data
t = a.query("Temp < 400").groupby(["BiasTo","Temp"])[["DisReal","Run"]].mean().reset_index()
t["Diff"] = t["DisReal"]-t["BiasTo"].apply(pd.to_numeric)
t["BiasTo"] = t["BiasTo"].apply(pd.to_numeric)
fg = sns.FacetGrid(data=t, hue='Temp', size=8, aspect=1.61)
fg.map(plt.scatter, 'BiasTo', 'Diff').add_legend()


Out[60]:
<seaborn.axisgrid.FacetGrid at 0x1a5e200e80>

In [2]:
data = pd.read_feather("/Users/weilu/Research/server/may_2018/second/rerun_7_10_May_222655.feather")
dic = {"T0":300, "T1":335, "T2":373, "T3":417, "T4":465, "T5":519, "T6":579, "T7":645, "T8":720, "T9":803, "T10":896, "T11":1000}
a = data
a["Temp"] = a["Temp"].apply(lambda x: dic[x])
rerun7 = data
t = a.query("Temp < 400").groupby(["BiasTo","Temp"])[["DisReal","Run"]].mean().reset_index()
t["Diff"] = t["DisReal"]-t["BiasTo"].apply(pd.to_numeric)
t["BiasTo"] = t["BiasTo"].apply(pd.to_numeric)
fg = sns.FacetGrid(data=t, hue='Temp', size=8, aspect=1.61)
fg.map(plt.scatter, 'BiasTo', 'Diff').add_legend()


Out[2]:
<seaborn.axisgrid.FacetGrid at 0x1a1a04ab00>

In [3]:
data = pd.read_feather("/Users/weilu/Research/server/may_2018/second/rerun_5_09_May_225324.feather")
dic = {"T0":300, "T1":335, "T2":373, "T3":417, "T4":465, "T5":519, "T6":579, "T7":645, "T8":720, "T9":803, "T10":896, "T11":1000}
a = data
a["Temp"] = a["Temp"].apply(lambda x: dic[x])
rerun5 = data
t = a.query("Temp < 600").groupby(["BiasTo","Temp"])[["DisReal","Run"]].mean().reset_index()
t["Diff"] = t["DisReal"]-t["BiasTo"].apply(pd.to_numeric)
t["BiasTo"] = t["BiasTo"].apply(pd.to_numeric)
fg = sns.FacetGrid(data=t, hue='Temp', size=8, aspect=1.61)
fg.map(plt.scatter, 'BiasTo', 'Diff').add_legend()


Out[3]:
<seaborn.axisgrid.FacetGrid at 0x1a46f45518>

In [196]:
data = pd.read_feather("/Users/weilu/Research/server/may_2018/02_week/all_data_folder/second.feather")

In [8]:
data.query("Temp == 417").plot.hexbin("z_h6", "Qw", cmap="seismic", sharex=False)


Out[8]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a12ac2470>

In [9]:
data.query("Temp == 417 and z_h6 < -10").plot.hexbin("z_h6", "Qw", cmap="seismic", sharex=False)


Out[9]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a129a5080>

In [4]:
data.query("Temp == 373").plot.hexbin("z_h6", "Qw", cmap="seismic", sharex=False)


Out[4]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a10b057b8>

In [202]:
data.query("Temp == 373 and z_h6 < -10").plot.hexbin("DisReal", "Qw", cmap="seismic", sharex=False)


Out[202]:
<matplotlib.axes._subplots.AxesSubplot at 0x1aa2fce470>

In [208]:
t = data.query("Temp == 373 and z_h6 < -10")
select(t)


Out[208]:
count mean std min 25% 50% 75% max
BiasTo Run
100.0 0 403.0 98.484597 5.939790 78.048268 94.697416 99.011737 102.044836 116.353839
3 3556.0 97.439866 5.797537 73.510047 93.462541 97.432723 101.257277 118.344023
4 639.0 98.940910 6.025661 81.090999 94.650217 99.121678 103.097034 118.331096
104.0 0 206.0 99.048250 5.323202 84.937206 95.822367 99.179898 102.628146 112.614668
4 212.0 101.859563 6.361181 83.271376 97.783673 101.592862 105.567846 122.631866
11 2712.0 100.657426 5.693546 83.333847 96.724036 100.653194 104.374763 122.147243
106.0 2 146.0 99.872891 5.889250 86.056405 95.632202 99.680676 104.512673 114.683436
3 192.0 98.445090 5.128149 85.069165 94.969211 98.753832 102.346920 110.865958
4 2276.0 104.241242 5.897537 82.192646 100.297443 104.206005 108.217691 128.633123
5 704.0 105.286335 6.107093 86.348014 100.934914 104.992214 109.393398 123.615739
6 408.0 105.865025 5.690973 88.535506 102.172858 106.082831 109.617474 122.818294
10 134.0 104.515281 5.535674 88.844636 100.631005 104.954048 108.731344 117.695529
108.0 1 498.0 107.355502 6.220350 91.144864 103.034525 106.958635 111.480797 125.213123
2 570.0 106.913369 5.762108 88.414309 102.750434 106.876047 110.686123 122.820243
3 1735.0 106.691281 6.059066 82.748179 102.704226 106.720764 110.943794 128.594500
7 1458.0 105.917929 5.844180 88.646720 101.898002 105.872380 109.787280 129.119437
110.0 5 546.0 107.698187 6.224264 90.239244 103.552380 107.730908 111.960099 123.765411
6 2695.0 105.880358 5.937300 85.051280 101.804597 105.931880 109.970087 123.602034
9 1747.0 106.361195 5.802679 83.627516 102.436172 106.508115 110.155771 122.818020
66.0 4 150.0 65.475058 5.915406 50.640952 61.204850 66.018527 69.945790 78.027368
11 226.0 65.542783 5.846168 50.759672 61.566355 65.701617 69.415440 80.483392
70.0 5 3314.0 69.924845 5.823413 46.984521 65.906052 69.955867 73.821125 88.794295
7 143.0 70.137746 5.586350 51.702432 67.101043 70.085201 73.873552 85.813631
76.0 0 492.0 73.767350 6.126093 47.615320 69.723507 73.624014 78.134593 88.137254
1 559.0 75.591337 5.678710 54.693544 71.948207 75.509457 79.460640 90.403207
3 409.0 76.243397 6.149498 60.116784 71.927846 75.790183 80.394016 93.863699
78.0 0 111.0 77.783536 5.201847 66.347794 74.256604 77.830677 81.217276 92.688953
2 322.0 77.980005 5.602085 61.222610 74.413772 77.927688 81.506626 93.443894
4 2687.0 77.558809 6.013306 53.905646 73.440252 77.878536 81.726582 97.069267
80.0 4 544.0 78.141333 6.128454 60.770572 74.086367 78.467103 82.692641 95.818035
5 382.0 78.567747 5.585530 62.031170 74.869499 78.657591 82.372138 96.466400
7 507.0 80.776536 5.741168 61.730400 76.984887 80.747553 84.926482 96.071146
8 841.0 79.570029 6.123078 59.340463 75.454554 79.325227 83.640788 100.948388
84.0 1 787.0 82.654568 5.767250 64.552330 78.641711 82.789952 86.456426 103.556700
2 281.0 82.169295 5.742680 62.355794 78.255511 81.744499 86.412938 97.868398
4 198.0 84.586011 5.754888 71.312212 80.846594 84.836077 88.603016 102.845841
90.0 0 184.0 88.816556 5.551126 74.107906 85.100322 87.995040 93.270422 105.755298
6 188.0 89.795542 5.551273 75.523504 86.051201 89.785101 93.795412 103.067409
8 3167.0 84.896780 5.367669 68.012101 81.352757 84.894422 88.394866 107.861023
92.0 3 373.0 91.772664 5.516173 74.998883 88.119079 91.541933 95.139827 108.545723
4 126.0 90.756673 6.391736 73.689769 86.252096 90.552442 94.304050 108.581219
8 755.0 89.087252 5.355962 69.167446 85.608908 89.176644 92.542529 108.223856
10 178.0 91.367323 5.468630 74.746103 87.757293 91.852796 95.614526 103.292510
11 3020.0 90.439586 5.742374 70.882469 86.502726 90.408991 94.257991 109.156311
94.0 2 225.0 92.081935 6.667538 73.176841 87.360671 92.230486 95.963955 109.739271
3 2489.0 92.442238 5.898143 73.549944 88.334403 92.350111 96.538299 113.299356
4 357.0 90.230106 5.812051 71.168102 86.399658 90.607878 94.123196 107.561229
7 389.0 91.609501 6.035340 73.553283 87.963285 91.632543 95.420343 107.827181
11 504.0 93.349713 5.847457 77.835830 89.546666 93.216228 97.261623 111.548595
96.0 7 1128.0 94.732867 5.784738 75.073987 90.985876 94.713263 98.802671 113.958986
8 400.0 95.785246 5.740534 76.896395 92.061022 96.286669 99.515865 110.103994
10 2726.0 94.223559 5.800236 71.537408 90.272141 94.161975 98.042051 115.347543
98.0 4 958.0 97.103951 6.296934 77.792191 92.972607 97.094504 101.500407 118.020499
5 385.0 94.190571 5.715594 78.290611 90.601997 94.079306 98.089542 109.967276
7 1935.0 96.225572 5.823949 78.002339 92.337121 96.342269 100.327993 114.000286
10 612.0 97.472403 6.087561 80.458552 93.392625 97.491201 101.559643 115.365649

In [197]:
data.query("Temp == 300").plot.hexbin("z_h6", "Qw", cmap="seismic", sharex=False)


Out[197]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a98370940>

In [130]:
rerun7.query("Temp == 300").plot.hexbin("z_h6", "Qw", cmap="seismic", sharex=False)


Out[130]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a3485d710>

In [206]:
t = data.query("Temp == 300 and Qw < 0.31 and z_h6 > -10")
t.plot.hexbin("z_h6", "Qw", cmap="seismic", sharex=False)


Out[206]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a984165f8>

In [207]:
select(t)


Out[207]:
count mean std min 25% 50% 75% max
BiasTo Run
104.0 7 375.0 96.572291 4.512156 84.054471 93.515349 96.322981 100.043510 109.806808
66.0 2 484.0 62.246462 4.515100 49.530995 58.957065 62.068580 65.361498 75.040679
3 1199.0 62.025993 4.371451 46.648777 59.181341 62.014272 64.807609 75.627741
5 2725.0 61.713339 4.293977 43.420731 58.769665 61.765367 64.681287 75.656634
70.0 1 232.0 63.618001 4.383396 48.825907 60.777872 63.548697 66.567819 75.431042
76.0 0 275.0 68.536339 3.922397 55.980488 66.244700 68.090128 70.946116 80.691266
4 1574.0 67.518532 3.952661 46.604619 64.958573 67.441927 70.267016 80.616266
5 831.0 67.732441 3.992476 51.316798 64.898616 67.786925 70.490090 78.776052
78.0 10 632.0 71.068567 4.972830 57.489993 67.799464 70.706520 74.115063 87.235756
80.0 0 1491.0 71.249152 4.870894 53.486660 68.054983 71.155559 74.340792 87.777016
7 1169.0 70.416314 4.356603 51.450569 67.590995 70.262420 73.238760 84.501971
84.0 10 174.0 79.138098 4.930211 68.456198 76.248534 79.565527 82.179449 92.390535
94.0 2 350.0 79.854604 5.111356 68.482505 76.094154 79.570511 83.607998 95.275141

In [129]:
rerun7.query("Temp == 335").plot.hexbin("z_h6", "Qw", cmap="seismic", sharex=False)


Out[129]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a223d0400>

In [135]:
t = rerun7.query("Temp == 335 and z_h6 < -10 and Qw > 0.3").reset_index()
t["BiasTo"] = t["BiasTo"].apply(pd.to_numeric)

In [136]:
t.plot.hexbin("DisReal", "BiasTo", cmap="seismic", sharex=False)


Out[136]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a312492e8>

In [ ]:


In [138]:
select(t)


Out[138]:
count mean std min 25% 50% 75% max
BiasTo Run
76.0 1 1232.0 74.023480 5.210408 57.210694 70.545582 73.997634 77.587033 89.862177
78.0 11 435.0 75.826089 4.993334 62.653720 72.263523 75.798713 79.233851 89.965252
80.0 4 1207.0 78.162645 5.717167 56.193863 74.238322 78.106893 82.093252 97.122317
92.0 8 999.0 88.185082 5.552502 67.605961 84.575248 88.456036 91.870253 102.263162
10 498.0 88.887020 5.182846 71.724760 85.739568 88.962525 92.439484 111.987214
94.0 4 1931.0 90.083078 5.347994 73.388469 86.532110 90.093899 93.600551 110.214724
98.0 5 1671.0 93.584790 5.346931 73.880812 89.981211 93.645185 96.998368 111.659439
104.0 0 1305.0 98.226970 5.577615 82.832468 94.284345 98.011747 101.903629 115.968868
106.0 2 1124.0 98.700564 5.091508 83.843885 95.180261 98.778207 102.321804 114.406352
3 1156.0 99.843058 5.455630 80.715249 96.200114 99.675574 103.325774 117.523148

In [139]:
t.groupby("BiasTo").mean()


Out[139]:
index Step Run Temp Qw Energy DisReal Dis_h56 z_average abs_z_average ... Lipid9 Lipid10 Lipid11 Lipid12 Lipid13 Lipid14 Lipid15 TotalE enhanced enhanced2
BiasTo
76.0 75829.662338 7.528022e+07 1.000000 335.0 0.419714 -787.198097 74.023480 54.882649 -5.737391 11.824347 ... 0.000222 -1.677559 0.366727 0.001223 -1.043504 0.004785 0.024278 -793.068318 -813.945117 -1001.836312
78.0 619376.616972 7.645921e+07 10.983945 335.0 0.409959 -787.251531 75.836519 57.293225 -6.011798 12.176148 ... 0.000204 -1.660428 0.345270 0.001171 -0.697068 0.002623 0.013702 -792.749564 -813.696687 -1002.220790
80.0 255059.017899 7.502232e+07 4.060700 335.0 0.396330 -784.359298 78.093356 58.685099 -5.914600 12.221533 ... 0.000193 -1.680375 0.316662 0.000339 -0.524596 0.001458 0.015074 -789.806079 -810.654118 -998.286468
92.0 881826.733467 7.394336e+07 8.665331 335.0 0.347718 -782.143076 88.418592 63.824719 -5.856301 12.851031 ... 0.000150 -1.569978 0.253060 0.000201 -0.147005 0.000554 0.003983 -787.663398 -808.193521 -992.964629
94.0 734348.741585 7.478558e+07 4.000000 335.0 0.385017 -783.835478 90.083078 65.207152 -6.173366 12.465942 ... 0.000146 -1.670282 0.223013 0.000146 -0.054047 0.000139 0.002255 -788.807472 -809.641429 -997.147043
98.0 823450.723519 7.448591e+07 5.000000 335.0 0.375689 -780.905506 93.584790 65.477133 -6.345546 12.578557 ... 0.000143 -1.706769 0.168946 0.000143 0.022783 0.000137 0.002268 -786.040861 -806.925884 -994.891092
104.0 766116.928736 7.537631e+07 0.000000 335.0 0.370812 -781.640884 98.226970 67.105505 -6.295991 12.561866 ... 0.000140 -1.711540 0.187432 0.000141 0.066696 0.000135 0.000767 -786.768213 -807.602480 -995.110889
106.0 525019.328070 7.500961e+07 2.507018 335.0 0.371979 -782.297658 99.279828 68.600422 -6.280674 12.501022 ... 0.000146 -1.676519 0.199154 0.000147 0.054261 0.000139 0.000628 -787.300055 -808.106092 -995.360423

8 rows × 47 columns


In [ ]:
rerun7.query("Temp == 335 and z_h6 < -10").plot.hexbin("z_h6", "Qw", cmap="seismic", sharex=False)

In [127]:
rerun7.query("Temp == 335 and z_h6 < -10").plot.hexbin("DisReal", "Qw", cmap="seismic", sharex=False)


Out[127]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a268c85f8>

In [126]:
rerun7.query("Temp == 300 and z_h6 < -10").plot.hexbin("DisReal", "Qw", cmap="seismic", sharex=False)


Out[126]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a2e6599b0>

In [140]:
rerun7.query("Temp == 300").plot.hexbin("z_h6", "Qw", cmap="seismic", sharex=False)


Out[140]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a33d419e8>

In [141]:
rerun7.query("Temp == 300 and z_h6 > -10").plot.hexbin("z_h6", "Qw", cmap="seismic", sharex=False)


Out[141]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a20838438>

In [148]:
rerun7.query("Temp == 300").plot.hexbin("TotalE", "Qw", cmap="seismic", sharex=False)


Out[148]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a319419e8>

In [143]:
rerun7.query("Temp == 300").plot.hexbin("AMH", "Qw", cmap="seismic", sharex=False)


Out[143]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a32500550>

In [123]:
rerun7.query("Temp == 300").plot.hexbin("AMH-Go", "Qw", cmap="seismic", sharex=False)


Out[123]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a30734a20>

In [ ]:
rerun7.query("Temp == 300 and z_h6 > -10").plot.hexbin("AMH", "Qw", cmap="seismic", sharex=False)

In [156]:
t = rerun7.query("Temp == 300 and z_h6 < -10 and Qw < 0.5 and Qw > 0.3")
t2 = rerun7.query("Temp == 300 and z_h6 > -10 and Qw < 0.5 and Qw > 0.3")

In [157]:
t.mean() -t2.mean()


Out[157]:
Step            -40027.105220
Run                  1.111502
Temp                 0.000000
Qw                   0.033665
Energy               9.276162
DisReal              2.985601
Dis_h56             39.384051
z_average           -4.129847
abs_z_average        1.650376
z_h1                -1.096086
z_h2                 0.766060
z_h3                -1.332612
z_h4                -0.621439
z_h5                -7.602725
z_h6               -15.213754
AMH                -29.187641
Distance             8.758229
AMH-Go               5.801109
Membrane             3.100466
Rg                  -0.737857
rg1                 -0.210990
rg2                 -0.457798
rg3                  1.023306
rg4                 -0.605790
rg5                  0.600256
rg6                 -1.086841
rg_all              -0.737857
Lipid                6.086390
Lipid1              -1.565623
Lipid2              -0.234741
Lipid3               0.577340
Lipid4               0.194780
Lipid5              -0.002457
Lipid6              -0.091126
Lipid7              -0.013360
Lipid8               1.569201
Lipid9               0.141575
Lipid10             -0.291105
Lipid11             -0.155386
Lipid12              2.002939
Lipid13              1.400279
Lipid14              2.110878
Lipid15              0.443197
TotalE              15.362552
enhanced            12.443788
enhanced2          -13.825088
dtype: float64

In [171]:
t = rerun7.query("Temp == 300")
t.plot.hexbin("z_h6", "Qw", cmap="seismic", sharex=False)


Out[171]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a3242b160>

In [172]:
t = rerun7.query("Temp == 335")
t.plot.hexbin("z_h6", "Qw", cmap="seismic", sharex=False)


Out[172]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a2f08d1d0>

In [173]:
t = rerun7.query("Temp == 373")
t.plot.hexbin("z_h6", "Qw", cmap="seismic", sharex=False)


Out[173]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a36c2d668>

In [169]:
t = rerun7.query("Temp == 300 and z_h6 < -10 and Qw < 0.5 and Qw > 0.3")
t.plot.hexbin("z_h6", "Qw", cmap="seismic", sharex=False)


Out[169]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a35225fd0>

In [155]:
select(t)


Out[155]:
count mean std min 25% 50% 75% max
BiasTo Run
104.0 0 983.0 97.236719 4.697942 75.259632 94.172471 97.209757 100.218575 111.752813
106.0 2 1282.0 98.091455 5.104332 82.959509 94.723268 97.865912 101.486439 116.643485
3 1216.0 98.478695 4.999915 84.474095 94.966816 98.486398 101.926884 116.512454
108.0 5 2494.0 99.859955 5.161321 78.890574 96.420361 100.032860 103.269771 122.993387
76.0 1 1036.0 73.682215 5.332250 57.548284 70.103801 73.575262 77.109914 92.262656
78.0 11 1876.0 75.739058 4.809065 57.741314 72.539339 75.741932 78.918162 90.481713
80.0 4 828.0 77.300188 5.408708 52.286470 73.709286 77.506979 80.832618 94.992811
5 174.0 75.664075 4.950528 62.046244 72.363856 74.990368 78.711984 92.407676
92.0 8 429.0 86.786188 5.309282 72.056644 83.231807 86.634892 90.337822 100.475586
10 1957.0 87.644650 5.030138 68.489670 84.281224 87.662472 91.091389 104.262747
94.0 4 317.0 89.639420 4.359607 76.309859 86.817685 89.658139 92.808264 99.602752
98.0 5 778.0 92.530223 4.506419 78.944036 89.431657 92.545338 95.640610 104.433651

Temp335, wanted region


In [160]:
t = rerun7.query("Temp == 335 and z_h6 < -10 and Qw < 0.5 and Qw > 0.3")
t.plot.hexbin("z_h6", "Qw", cmap="seismic", sharex=False)


Out[160]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a2eae0f98>

In [161]:
select(t)


Out[161]:
count mean std min 25% 50% 75% max
BiasTo Run
104.0 0 1305.0 98.226970 5.577615 82.832468 94.284345 98.011747 101.903629 115.968868
106.0 2 1124.0 98.700564 5.091508 83.843885 95.180261 98.778207 102.321804 114.406352
3 1156.0 99.843058 5.455630 80.715249 96.200114 99.675574 103.325774 117.523148
76.0 1 1209.0 74.082361 5.210250 57.210694 70.590253 74.059621 77.666870 89.862177
78.0 11 433.0 75.840299 4.989808 62.653720 72.269304 75.798713 79.234013 89.965252
80.0 4 1199.0 78.205718 5.708883 56.193863 74.292922 78.135024 82.098996 97.122317
92.0 8 999.0 88.185082 5.552502 67.605961 84.575248 88.456036 91.870253 102.263162
10 498.0 88.887020 5.182846 71.724760 85.739568 88.962525 92.439484 111.987214
94.0 4 1930.0 90.079729 5.347355 73.388469 86.531275 90.093425 93.595895 110.214724
98.0 5 1671.0 93.584790 5.346931 73.880812 89.981211 93.645185 96.998368 111.659439

In [153]:
t = rerun7.query("Temp == 300 and z_h6 < -10 and Qw < 0.3")
t.plot.hexbin("z_h6", "Qw", cmap="seismic", sharex=False)


Out[153]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a31815e80>

In [145]:
select(t)


Out[145]:
count mean std min 25% 50% 75% max
BiasTo Run
104.0 7 181.0 95.704018 4.556815 84.970460 92.664524 95.238269 98.807743 109.233188
66.0 2 127.0 63.392083 5.284954 50.822627 59.355286 63.830648 66.905153 75.040679
3 155.0 62.076760 4.753613 46.648777 58.998967 62.410232 64.652787 72.970265
5 1666.0 61.815108 4.326926 45.625209 58.908376 61.907398 64.787320 75.504473
76.0 4 492.0 67.842105 4.139229 54.946519 65.129913 67.681245 70.528308 80.616266
5 798.0 67.845849 3.960630 51.316798 65.086735 67.965995 70.556356 78.776052
78.0 10 384.0 71.311397 5.041818 57.489993 68.265122 71.306240 74.418030 87.235756
80.0 0 290.0 75.385777 4.865265 62.964775 71.913314 75.275187 78.224935 87.777016
7 932.0 70.427112 4.340987 51.450569 67.656081 70.256717 73.236985 84.501971

In [151]:
t = rerun7.query("Temp == 335 and z_h6 < -10 and Qw < 0.3")
t.plot.hexbin("z_h6", "Qw", cmap="seismic", sharex=False)


Out[151]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a1f20bcf8>

In [152]:
select(t)


Out[152]:
count mean std min 25% 50% 75% max
BiasTo Run
100.0 3 136.0 98.840375 5.872436 81.748690 94.793803 98.951190 102.267697 118.880136
106.0 4 182.0 102.647867 5.657400 88.295833 99.029522 103.068476 106.180091 121.598446
108.0 3 483.0 106.920396 5.681707 88.389125 103.107503 107.051994 110.643596 125.874266
7 1333.0 106.851431 5.410414 90.730532 103.418882 106.944734 110.435660 127.743628
110.0 6 1212.0 105.872857 5.306306 87.915961 102.181067 105.922211 109.488765 124.152208
9 1282.0 106.449395 5.887841 88.107756 102.389418 106.634050 110.480290 123.156433
70.0 5 146.0 69.508859 5.876744 55.408850 65.762495 69.508667 72.841833 94.763460
78.0 4 789.0 77.486859 5.509485 60.157298 73.571904 77.627943 81.239824 93.446632
90.0 8 142.0 85.060585 5.395871 69.202456 81.483329 86.163437 88.939565 95.660959
92.0 8 360.0 90.710870 5.285816 75.402805 86.963804 90.890556 94.191739 108.057062
11 639.0 90.017243 5.530319 70.784876 86.177460 90.119480 93.623069 108.551149
94.0 3 107.0 91.393083 5.359421 79.516887 88.143413 91.020247 94.283203 109.622892

In [117]:
t.columns


Out[117]:
Index(['Step', 'Run', 'Temp', 'Qw', 'Energy', 'DisReal', 'Dis_h56',
       'z_average', 'abs_z_average', 'z_h1', 'z_h2', 'z_h3', 'z_h4', 'z_h5',
       'z_h6', 'AMH', 'Distance', 'AMH-Go', 'Membrane', 'Rg', 'rg1', 'rg2',
       'rg3', 'rg4', 'rg5', 'rg6', 'rg_all', 'Lipid', 'Lipid1', 'Lipid2',
       'Lipid3', 'Lipid4', 'Lipid5', 'Lipid6', 'Lipid7', 'Lipid8', 'Lipid9',
       'Lipid10', 'Lipid11', 'Lipid12', 'Lipid13', 'Lipid14', 'Lipid15',
       'TotalE', 'BiasTo', 'enhanced', 'enhanced2'],
      dtype='object')

In [118]:
t.plot.hexbin("Lipid1", "AMH", cmap="seismic", sharex=False)


Out[118]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a543d1128>

In [108]:
select(t)


Out[108]:
count mean std min 25% 50% 75% max
BiasTo Run
100.0 1 1344.0 93.739921 4.829096 76.597129 90.436084 93.816887 97.065467 108.074121
6 1152.0 93.961998 4.907248 78.503525 90.558925 93.773596 97.240900 110.069962
102.0 0 1060.0 95.047542 4.858730 81.863895 91.599204 95.031227 98.466960 110.032530
2 586.0 94.655434 4.835790 79.529447 91.294947 94.794964 98.039465 107.841112
7 854.0 95.672178 4.737731 79.617564 92.335672 95.723774 98.825936 111.404108
104.0 6 1261.0 96.838378 4.764481 80.442750 93.729193 96.929333 100.066832 110.898993
110.0 2 2500.0 100.439827 4.609377 82.772876 97.472245 100.582246 103.588942 114.353968
66.0 2 115.0 56.892185 5.208173 46.560253 53.029286 55.942171 60.134293 69.839406
5 404.0 59.630234 4.542320 47.724268 56.500025 59.603640 62.819179 71.914630
72.0 0 310.0 69.015500 5.081561 55.036318 65.718810 68.680601 72.249303 83.855850
2 144.0 70.372106 5.192965 57.916279 67.242665 70.372535 73.405910 84.579602
3 286.0 62.851360 6.354464 39.189974 58.465329 62.364260 66.805590 81.096443
4 463.0 66.936584 6.371157 50.609825 62.263840 67.011289 71.976895 84.190385
74.0 0 252.0 64.989668 6.054383 49.300670 60.235169 64.670696 68.910969 84.327793
2 318.0 70.868808 5.996328 54.662364 66.535393 70.901771 74.815786 86.762215
80.0 7 238.0 69.192168 4.425097 53.926003 66.603126 69.572762 72.104206 79.399960
82.0 5 664.0 78.840254 5.345531 62.806017 74.781704 79.028465 82.530266 96.714158
6 290.0 79.022581 5.182845 65.884464 75.570929 79.567430 82.307026 92.508899
7 1546.0 78.750397 5.292564 62.101646 75.177194 78.817003 82.445296 94.467419
84.0 6 2424.0 80.212850 5.190536 61.418306 76.763290 80.392789 83.824336 98.104186
86.0 0 527.0 82.090873 5.179481 61.981805 78.718268 82.598812 85.667924 95.301165
2 682.0 82.136701 5.071516 65.376241 78.505408 82.228693 85.430776 98.537159
11 1289.0 82.415968 5.158262 60.801621 78.792135 82.443226 86.120502 98.121379
88.0 0 1058.0 83.287597 5.051166 67.521587 79.926195 83.257594 86.702555 103.561156
1 905.0 82.851621 5.153717 64.843652 79.496369 82.911188 86.405320 98.628496
2 536.0 83.288159 5.010807 67.245506 80.175252 83.269269 86.671535 97.111914
90.0 3 1427.0 85.839335 5.260269 68.794344 82.390861 85.925972 89.457583 100.868411
4 1069.0 85.210802 5.184047 71.351261 81.760753 85.341930 88.638737 103.316232
94.0 9 2094.0 88.672770 5.152129 69.705641 85.150322 88.745308 92.242128 107.103057
96.0 2 990.0 90.360002 4.759186 73.864911 87.236680 90.485402 93.415012 104.335169
11 1508.0 90.500384 4.930110 74.030324 87.237547 90.590971 93.829245 106.865277
98.0 0 1717.0 91.783479 4.812580 76.399939 88.526971 91.727303 95.012397 107.011335

In [62]:
rerun7.query("Temp == 335").plot.hexbin("z_h6", "Qw", cmap="seismic", sharex=False)


Out[62]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a2e7509e8>

In [102]:
t = rerun7.query("Temp == 335 and z_h6 > -10 and Qw < 0.3")
t.plot.hexbin("z_h6", "Qw", cmap="seismic", sharex=False)


Out[102]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a211aaba8>

In [103]:
select(t)


Out[103]:
count mean std min 25% 50% 75% max
BiasTo Run
104.0 7 503.0 96.805466 5.026233 80.831984 93.383301 96.984779 100.465932 110.408008
108.0 3 105.0 103.824539 5.551262 90.494543 100.443721 103.523975 107.291589 119.551861
7 496.0 104.489229 6.017674 83.234628 100.604054 104.699169 108.443992 121.867900
66.0 2 1118.0 63.570074 5.439647 47.022188 60.127977 63.844380 67.059324 80.089843
3 792.0 61.834833 4.890437 43.536531 58.766801 61.973693 65.249880 77.481811
5 380.0 61.710804 4.590486 49.125158 58.875060 61.911292 64.921578 73.392718
70.0 1 2056.0 65.263962 5.051822 48.928592 61.976684 65.230626 68.519613 81.578480
2 268.0 65.230997 4.281779 52.700050 62.649558 65.129007 68.007928 79.894626
76.0 4 546.0 67.995746 4.038022 54.134906 65.276607 68.048017 70.746849 80.147184
5 507.0 68.530166 4.168303 52.777854 65.775465 68.787612 71.674239 79.993216
78.0 10 1236.0 71.254981 5.181210 54.691566 67.501270 71.073344 74.661424 91.038049
80.0 0 560.0 75.581667 5.436957 59.119359 71.950844 75.759115 79.173425 91.556416
7 575.0 72.581609 5.344538 54.551706 69.061007 72.371437 76.153751 89.313031
84.0 10 2252.0 75.190994 5.087048 58.970575 71.842171 75.080753 78.651520 91.272381

In [67]:
rerun7.query("Temp == 335").plot.hexbin("DisReal", "Qw", cmap="seismic", sharex=False)


Out[67]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a2e148cf8>

In [96]:
rerun7.query("Temp == 335").plot.hexbin("z_h6", "TotalE", cmap="seismic", sharex=False)


Out[96]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a2f89b588>

In [98]:
rerun7.query("Temp == 335 and (z_h6 < -10 or Qw > 0.5)").plot.hexbin("Qw", "TotalE", cmap="seismic", sharex=False)


Out[98]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a2f8ffeb8>

In [99]:
rerun7.query("Temp == 335").plot.hexbin("Qw", "TotalE", cmap="seismic", sharex=False)


Out[99]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a4d713898>

In [58]:
rerun7.query("Temp == 300 and z_h6 < -10").plot.hexbin("AMH", "AMH-Go", cmap="seismic", sharex=False)


Out[58]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a254547b8>

In [66]:
rerun7.query("Temp == 335 and z_h6 < -10").plot.hexbin("AMH", "AMH-Go", cmap="seismic", sharex=False)


Out[66]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a2e12c390>

In [83]:
rerun7.columns


Out[83]:
Index(['Step', 'Run', 'Temp', 'Qw', 'Energy', 'DisReal', 'Dis_h56',
       'z_average', 'abs_z_average', 'z_h1', 'z_h2', 'z_h3', 'z_h4', 'z_h5',
       'z_h6', 'AMH', 'Distance', 'AMH-Go', 'Membrane', 'Rg', 'rg1', 'rg2',
       'rg3', 'rg4', 'rg5', 'rg6', 'rg_all', 'Lipid', 'Lipid1', 'Lipid2',
       'Lipid3', 'Lipid4', 'Lipid5', 'Lipid6', 'Lipid7', 'Lipid8', 'Lipid9',
       'Lipid10', 'Lipid11', 'Lipid12', 'Lipid13', 'Lipid14', 'Lipid15',
       'TotalE', 'BiasTo', 'enhanced'],
      dtype='object')

In [84]:
rerun7["enhanced"] = rerun7["AMH"]*0.1 + rerun7["TotalE"]

In [87]:
rerun7["enhanced2"] = rerun7["AMH"] + rerun7["TotalE"]

In [94]:
rerun7.query("Temp == 335").plot.scatter("Lipid1", "AMH")


Out[94]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a2f503668>

In [92]:
rerun7.query("Temp == 335").plot.scatter("Qw", "AMH")


Out[92]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a2fc713c8>

In [88]:
rerun7.query("Temp == 335").plot.scatter("TotalE", "enhanced2")


Out[88]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a24f10a90>

In [86]:
rerun7.query("Temp == 335").plot.scatter("TotalE", "enhanced")


Out[86]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a24f07cf8>

In [72]:
data = pd.read_table("/Users/weilu/Research/server/may_2018/02_week/second_enhance_n/_280-350/data_7/t_335_dis_100.0.dat", sep="\s+", names=["a1","a2","a3","a4", "a5", "a6", "a7", "a8"])

In [81]:
data


Out[81]:
a1 a2 a3 a4 a5 a6 a7 a8
0 -848.062680 0.371843 89.419086 -5.550026 24.142770 -866.495354 -884.928028 -829.630005
1 -825.801928 0.360622 95.509853 -6.432038 27.230851 -843.940460 -862.078992 -807.663396
2 -804.013015 0.370880 100.204664 -4.453149 27.833397 -821.866843 -839.720670 -786.159188
3 -786.241257 0.338644 99.608381 -2.743801 27.545341 -804.611315 -822.981373 -767.871199
4 -792.362325 0.339949 91.890189 -3.097147 25.132732 -810.551748 -828.741171 -774.172902
5 -804.361112 0.371725 95.307202 -5.211897 27.082258 -822.429893 -840.498674 -786.292331
6 -804.454067 0.373111 93.365520 -4.313025 27.776401 -822.900520 -841.346973 -786.007614
7 -789.206315 0.384949 92.448653 -3.594229 28.725457 -806.942475 -824.678635 -771.470156
8 -793.981893 0.369531 97.572975 -4.377663 24.152385 -812.174765 -830.367636 -775.789021
9 -789.943527 0.397492 98.874028 -4.431319 26.869133 -808.058250 -826.172974 -771.828803
10 -805.901387 0.369929 97.733608 -4.751722 27.287797 -824.102961 -842.304534 -787.699814
11 -788.092091 0.353509 97.801154 -5.954886 27.128325 -806.211869 -824.331646 -769.972314
12 -799.650069 0.363966 93.270567 -5.275772 24.742191 -817.501508 -835.352946 -781.798631
13 -803.225592 0.363167 89.784314 -5.221382 27.219930 -820.796438 -838.367283 -785.654746
14 -790.741595 0.378511 91.209741 -3.635619 27.503238 -808.471900 -826.202204 -773.011291
15 -801.486938 0.373480 88.652136 -4.884662 27.443398 -818.786466 -836.085994 -784.187410
16 -809.694671 0.374829 90.941280 -3.762580 25.466415 -827.817710 -845.940749 -791.571631
17 -780.929613 0.322455 94.268469 -2.095740 28.038457 -799.113345 -817.297077 -762.745880
18 -792.189368 0.320459 87.862741 -3.959362 28.000469 -810.166615 -828.143862 -774.212122
19 -814.794796 0.344854 100.168828 -4.134487 26.838942 -832.890855 -850.986914 -796.698737
20 -824.342404 0.364535 89.225769 -4.904087 26.382354 -842.390222 -860.438040 -806.294585
21 -795.343249 0.376741 101.060386 -5.916863 25.828717 -813.679014 -832.014779 -777.007484
22 -792.180732 0.376105 95.723035 -2.863002 27.983336 -810.365881 -828.551029 -773.995584
23 -837.505081 0.338709 90.926340 -1.925900 26.085302 -855.833815 -874.162548 -819.176348
24 -811.142488 0.365281 87.317114 -3.651708 25.771002 -829.458658 -847.774828 -792.826317
25 -797.827594 0.348935 99.215040 -5.466354 27.737486 -816.585110 -835.342626 -779.070078
26 -813.914943 0.373646 97.237467 -5.347568 26.159811 -831.206489 -848.498034 -796.623398
27 -783.419286 0.388469 97.585765 -3.615397 24.188813 -801.601609 -819.783932 -765.236963
28 -774.463595 0.341117 92.681570 -3.310369 24.824912 -791.415814 -808.368033 -757.511376
29 -780.044686 0.350181 86.285308 -4.100954 24.675964 -797.641496 -815.238306 -762.447876
... ... ... ... ... ... ... ... ...
2470 -825.329019 0.372482 89.689026 -5.297631 25.259350 -843.339012 -861.349005 -807.319027
2471 -820.160994 0.374059 91.279553 -4.255118 24.096570 -838.010725 -855.860455 -802.311264
2472 -816.714196 0.367177 93.940100 -4.633639 26.027035 -834.579790 -852.445384 -798.848602
2473 -822.189248 0.374292 91.434122 -4.500072 25.825960 -840.034205 -857.879162 -804.344290
2474 -807.434216 0.358395 87.280719 -4.345500 22.133639 -824.635343 -841.836471 -790.233088
2475 -822.550077 0.338453 86.135569 -4.606000 25.019070 -840.865143 -859.180210 -804.235011
2476 -811.559102 0.353910 87.198928 -4.451547 28.810078 -829.547590 -847.536077 -793.570615
2477 -816.202396 0.344184 85.269396 -4.788271 22.869768 -833.876486 -851.550576 -798.528306
2478 -814.974381 0.379269 87.845473 -5.294356 25.150339 -832.962809 -850.951237 -796.985953
2479 -783.927055 0.346572 81.333835 -5.047130 26.812051 -801.943957 -819.960858 -765.910153
2480 -794.623961 0.374015 87.272250 -6.365755 25.134897 -812.702323 -830.780684 -776.545600
2481 -766.527549 0.337260 94.464363 -4.076230 23.871932 -784.134693 -801.741836 -748.920405
2482 -789.407031 0.360164 89.174012 -4.222550 26.377044 -807.486456 -825.565881 -771.327606
2483 -800.732886 0.358768 94.817906 -5.147075 23.939407 -818.506449 -836.280012 -782.959323
2484 -817.602229 0.383473 92.104003 -5.015728 24.159919 -835.800377 -853.998525 -799.404081
2485 -816.539032 0.389973 92.678523 -5.233186 26.636598 -834.625139 -852.711245 -798.452926
2486 -852.004111 0.377993 85.043412 -3.077275 26.827107 -869.962360 -887.920608 -834.045862
2487 -820.399632 0.370655 94.387430 -4.129747 25.454599 -838.341969 -856.284307 -802.457294
2488 -786.595298 0.353749 99.483651 -3.891015 25.841147 -803.904098 -821.212899 -769.286498
2489 -797.509399 0.355116 95.563489 -3.926478 24.095959 -815.835932 -834.162465 -779.182866
2490 -803.120610 0.380340 98.586404 -3.609563 24.659029 -821.462517 -839.804424 -784.778703
2491 -831.396782 0.341813 101.159954 -2.875684 26.041662 -848.726301 -866.055821 -814.067262
2492 -794.387867 0.371807 98.047276 -4.546357 26.008035 -811.579496 -828.771126 -777.196238
2493 -828.158841 0.378293 93.226122 -5.313434 27.624854 -845.505682 -862.852524 -810.812000
2494 -835.816044 0.366167 95.183939 -4.625407 21.476707 -853.122160 -870.428275 -818.509928
2495 -795.620936 0.349063 102.323253 -4.658611 27.299382 -812.910131 -830.199327 -778.331741
2496 -807.540414 0.345611 100.310563 -5.387493 24.942699 -825.054942 -842.569469 -790.025887
2497 -790.067964 0.354923 97.585145 -5.263667 26.297940 -807.159013 -824.250061 -772.976916
2498 -785.951913 0.355652 94.674379 -5.147092 24.545910 -803.132978 -820.314042 -768.770848
2499 -783.014582 0.336452 96.994111 -3.239683 25.886793 -800.799826 -818.585071 -765.229338

2500 rows × 8 columns


In [82]:
data.plot.scatter("a1", "a7")


Out[82]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a2dc1b5c0>

In [ ]:
rerun7.plot()

In [ ]:
rerun7.query("Temp == 335").plot.hexbin("AMH", "AMH-Go", cmap="seismic", sharex=False)

In [65]:
rerun7.query("Temp == 335").plot.hexbin("AMH", "AMH-Go", cmap="seismic", sharex=False)


Out[65]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a22bf02e8>

In [55]:
rerun7.query("Temp == 300").plot.hexbin("AMH", "AMH-Go", cmap="seismic", sharex=False)


Out[55]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a252d0be0>

In [14]:
rerun5.query("Temp == 300").plot.hexbin("DisReal", "Qw", cmap="seismic", sharex=False)


Out[14]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a1ae3c048>

In [17]:
rerun7.query("Temp == 300").plot.hexbin("DisReal", "Qw", cmap="seismic", sharex=False)


Out[17]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a1c07fcf8>

In [20]:
rerun7.query("Temp == 300 and (z_h6 < -10 or Qw > 0.5) ").plot.hexbin("DisReal", "Qw", cmap="seismic", sharex=False)


Out[20]:
<matplotlib.axes._subplots.AxesSubplot at 0x11060ad30>

In [22]:
t= rerun7.query("Temp == 300 and z_h6 < -10")
select(t)


Out[22]:
count mean std min 25% 50% 75% max
BiasTo Run
104.0 0 983.0 97.236719 4.697942 75.259632 94.172471 97.209757 100.218575 111.752813
106.0 2 1282.0 98.091455 5.104332 82.959509 94.723268 97.865912 101.486439 116.643485
3 1218.0 98.455991 5.028545 81.678390 94.947117 98.477324 101.920718 116.512454
108.0 5 2500.0 99.864770 5.167327 78.890574 96.421340 100.038164 103.274501 122.993387
76.0 1 1068.0 73.590042 5.332046 57.548284 70.040507 73.500604 77.007137 92.262656
78.0 11 1995.0 75.570485 4.826693 57.741314 72.381825 75.519168 78.749332 90.481713
80.0 4 856.0 77.191737 5.389062 52.286470 73.649426 77.294699 80.734393 94.992811
5 174.0 75.664075 4.950528 62.046244 72.363856 74.990368 78.711984 92.407676
92.0 8 440.0 86.975352 5.413682 72.056644 83.288570 86.665362 90.629183 100.869833
10 1981.0 87.548704 5.110247 68.489670 84.130072 87.597037 91.068002 104.262747
94.0 4 318.0 89.623595 4.361864 76.309859 86.805800 89.648488 92.806816 99.602752
98.0 5 780.0 92.539101 4.512893 78.944036 89.436135 92.545338 95.645138 104.433651

In [23]:
rerun7.query("Temp == 335 and (z_h6 < -10 or Qw > 0.5) ").plot.hexbin("DisReal", "Qw", cmap="seismic", sharex=False)


Out[23]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a21ae54a8>

In [27]:
t= rerun7.query("Temp == 335 and z_h6 < -10 and Qw > 0.25")
select(t)


Out[27]:
count mean std min 25% 50% 75% max
BiasTo Run
104.0 0 1320.0 98.259947 5.574974 82.832468 94.314557 98.029273 102.019173 115.968868
106.0 2 1136.0 98.691129 5.085558 83.843885 95.169937 98.769920 102.321804 114.406352
3 1180.0 99.887928 5.467260 80.715249 96.255772 99.749444 103.354365 117.523148
76.0 1 1233.0 74.029935 5.213221 57.210694 70.553128 73.999413 77.649048 89.862177
78.0 4 151.0 77.874687 5.780466 62.840120 73.235049 78.623478 82.329539 90.858642
11 436.0 75.809566 4.999511 62.653720 72.257411 75.786060 79.233770 89.965252
80.0 4 1216.0 78.185871 5.716180 56.193863 74.244251 78.116129 82.102672 97.122317
92.0 8 1356.0 88.845695 5.583830 67.605961 85.350187 89.168057 92.610793 108.057062
10 500.0 88.891416 5.177566 71.724760 85.748851 88.962525 92.448307 111.987214
94.0 4 1940.0 90.091752 5.350730 73.388469 86.532945 90.111791 93.612033 110.214724
98.0 5 1684.0 93.593049 5.363018 73.880812 89.981989 93.660790 96.994909 111.659439

In [18]:
rerun7.query("Temp == 300").plot.hexbin("z_h6", "Qw", cmap="seismic", sharex=False)


Out[18]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a1abc3748>

In [15]:
rerun5.query("Temp == 300 and z_h6 < -10 and Qw > 0.25").shape


Out[15]:
(15424, 44)

In [16]:
rerun7.query("Temp == 300 and z_h6 < -10 and Qw > 0.25").shape


Out[16]:
(13638, 44)

In [ ]:


In [4]:
rerun5.query("Temp == 335").plot.hexbin("DisReal", "Qw", cmap="seismic", sharex=False)


Out[4]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a1a013358>

In [5]:
rerun7.query("Temp == 335").plot.hexbin("DisReal", "Qw", cmap="seismic", sharex=False)


Out[5]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a1a013518>

In [10]:
rerun5.query("Temp == 335 and z_h6 < -10 and Qw > 0.25").shape


Out[10]:
(14546, 44)

In [9]:
rerun7.query("Temp == 335 and z_h6 < -10 and Qw > 0.25").shape


Out[9]:
(12426, 44)

In [12]:
rerun7.query("Temp == 335 and z_h6 < -10").plot.hexbin("z_h6", "Qw", cmap="seismic", sharex=False)


Out[12]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a1ee21da0>

In [13]:
rerun5.query("Temp == 335 and z_h6 < -10").plot.hexbin("z_h6", "Qw", cmap="seismic", sharex=False)


Out[13]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a1b05fef0>

In [50]:
pre = "/Users/weilu/Research/server/may_2018/01_week"
temp = 320
location = pre + "/second_combine/_280-350/2d_z_qw/force_0.1/"
location2 = location + f"pmf-{temp}.dat"
path, f = shortest_path(location2, start=(1, 10), end=(28,20),save=False, xlabel="z_H6", ylabel="Qw", zmax=25,res=30)
# plt.savefig("/Users/weilu/papers/figures/2d_z6_qw.png", dpi=300)
# plt.savefig("/Users/weilu/papers/figures/shortest_path.png", dpi=300)
location3 = location + f"evpb-{temp}.dat"
(xi,yi,zi) = plot2d(location3, zmax=120)
plt.plot(xi[path[:,1]], yi[path[:,0]], 'r.-')
# plt.savefig("/Users/weilu/papers/figures/2d_expected_dis.png", dpi=300)
plt.figure()
f_on_path = [zi[tuple(p)] for p in reversed(path)]
plt.plot(f_on_path)
# plt.savefig("/Users/weilu/papers/figures/shortest_path_expected_dis.png", dpi=300)


<matplotlib.colors.LinearSegmentedColormap object at 0x1a16de3ef0>
Out[50]:
[<matplotlib.lines.Line2D at 0x1a26a185c0>]

In [40]:
pre = "/Users/weilu/Research/server/may_2018/01_week"
temp = 310
location = pre + "/second_rerun2/_280-350/2d_z_qw/force_0.1/"
location2 = location + f"pmf-{temp}.dat"
path, f = shortest_path(location2, start=(1, 10), end=(28,20),save=False, xlabel="z_H6", ylabel="Qw", zmax=25,res=30)
# plt.savefig("/Users/weilu/papers/figures/2d_z6_qw.png", dpi=300)
# plt.savefig("/Users/weilu/papers/figures/shortest_path.png", dpi=300)
location3 = location + f"evpb-{temp}.dat"
(xi,yi,zi) = plot2d(location3, zmax=120)
plt.plot(xi[path[:,1]], yi[path[:,0]], 'r.-')
# plt.savefig("/Users/weilu/papers/figures/2d_expected_dis.png", dpi=300)
plt.figure()
f_on_path = [zi[tuple(p)] for p in reversed(path)]
plt.plot(f_on_path)
# plt.savefig("/Users/weilu/papers/figures/shortest_path_expected_dis.png", dpi=300)


<matplotlib.colors.LinearSegmentedColormap object at 0x1a16de3ef0>
Out[40]:
[<matplotlib.lines.Line2D at 0x1a1ecaa7b8>]

In [ ]: