stripy
smoothing operationsSSRFPACK is a Fortran 77 software package that constructs a smooth interpolatory or approximating surface to data values associated with arbitrarily distributed points on the surface of a sphere. It employs automatically selected tension factors to preserve shape properties of the data and avoid overshoot and undershoot associated with steep gradients.
Here we demonstrate how to access SSRFPACK smoothing through the stripy
interface
The next example is Ex6-Scattered-Data
In [ ]:
import stripy as stripy
mesh = stripy.spherical_meshes.icosahedral_mesh(refinement_levels=4, include_face_points=True)
print(mesh.npoints)
In [ ]:
import numpy as np
def analytic(lons, lats, k1, k2):
return np.cos(k1*lons) * np.sin(k2*lats)
def analytic_noisy(lons, lats, k1, k2, noise, short):
return np.cos(k1*lons) * np.sin(k2*lats) + short * (np.cos(k1*5.0*lons) * np.sin(k2*5.0*lats)) + noise * np.random.random(lons.shape)
# def analytic_ddlon(lons, lats, k1, k2):
# return -k1 * np.sin(k1*lons) * np.sin(k2*lats) / np.cos(lats)
# def analytic_ddlat(lons, lats, k1, k2):
# return k2 * np.cos(k1*lons) * np.cos(k2*lats)
analytic_sol = analytic(mesh.lons, mesh.lats, 5.0, 2.0)
analytic_sol_n = analytic_noisy(mesh.lons, mesh.lats, 5.0, 2.0, 0.1, 0.0)
In [ ]:
%matplotlib inline
import gdal
import cartopy
import cartopy.crs as ccrs
import matplotlib.pyplot as plt
fig = plt.figure(figsize=(10, 10), facecolor="none")
ax = plt.subplot(111, projection=ccrs.Orthographic(central_longitude=0.0, central_latitude=0.0, globe=None))
ax.coastlines(color="#999999", linewidth=2.0)
ax.set_global()
lons0 = np.degrees(mesh.lons)
lats0 = np.degrees(mesh.lats)
ax.scatter(lons0, lats0,
marker="o", s=10.0, transform=ccrs.Geodetic(), c=analytic_sol_n-analytic_sol, cmap=plt.cm.RdBu)
pass
The sTriangulation.smoothing
method directly wraps the SSRFPack smoother that smooths a surface f described
by values on the mesh vertices to find a new surface f' (also described on the mesh vertices) by choosing nodal function values and gradients to minimize the linearized curvature of F subject to a bound on the deviation from the data values.
help(mesh.smoothing)
smoothing(self, f, w, sm, smtol, gstol)
method of stripy.spherical_meshes.icosahedral_mesh instance
Smooths a surface f by choosing nodal function values and gradients to
minimize the linearized curvature of F subject to a bound on the
deviation from the data values. This is more appropriate than interpolation
when significant errors are present in the data.
Parameters
----------
f : array of floats, shape (n,)
field to apply smoothing on
w : array of floats, shape (n,)
weights associated with data value in f
w[i] = 1/sigma_f^2 is a good rule of thumb.
sm : float
positive parameter specifying an upper bound on Q2(f).
generally n-sqrt(2n) <= sm <= n+sqrt(2n)
smtol : float
specifies relative error in satisfying the constraint
sm(1-smtol) <= Q2 <= sm(1+smtol) between 0 and 1.
gstol : float
tolerance for convergence.
gstol = 0.05*mean(sigma_f)^2 is a good rule of thumb.
Returns
-------
f_smooth : array of floats, shape (n,)
smoothed version of f
(dfdx, dfdy, dfdz) : tuple of floats, tuple of 3 shape (n,) arrays
first derivatives of f_smooth in the x, y, and z directions
In [ ]:
stripy_smoothed, dds = mesh.smoothing(analytic_sol_n, np.ones_like(analytic_sol_n), 10.0, 0.1, 0.01)
stripy_smoothed2, dds = mesh.smoothing(analytic_sol_n, np.ones_like(analytic_sol_n), 1.0, 0.1, 0.01)
stripy_smoothed3, dds = mesh.smoothing(analytic_sol_n, np.ones_like(analytic_sol_n), 50.0, 0.1, 0.01)
delta_n = analytic_sol_n - stripy_smoothed
delta_ns = analytic_sol - stripy_smoothed
delta_n2 = analytic_sol_n - stripy_smoothed2
delta_ns2 = analytic_sol - stripy_smoothed2
delta_n3 = analytic_sol_n - stripy_smoothed3
delta_ns3 = analytic_sol - stripy_smoothed3
In [ ]:
import lavavu
lv = lavavu.Viewer(border=False, background="#FFFFFF", resolution=[666,666], near=-10.0)
nodes = lv.points("nodes", pointsize=3.0, pointtype="shiny", colour="#448080", opacity=0.75)
nodes.vertices(mesh.points)
tris = lv.triangles("triangles", wireframe=False, colour="#77ff88", opacity=1.0)
tris.vertices(mesh.points)
tris.indices(mesh.simplices)
tris.values(analytic_sol_n, label="original")
tris.values(stripy_smoothed, label="smoothed")
tris.values(stripy_smoothed2, label="smoothed2")
tris.values(stripy_smoothed3, label="smoothed3")
tris.values(delta_n, label="delta_n")
tris.values(delta_ns, label="delta_ns")
tris.values(delta_n2, label="delta_n2")
tris.values(delta_ns2, label="delta_ns2")
tris.values(delta_n3, label="delta_n3")
tris.values(delta_ns3, label="delta_ns3")
# and the errors
tris.colourmap("#990000 #FFFFFF #000099")
cb = tris.colourbar()
# view the pole
lv.translation(0.0, 0.0, -3.0)
lv.rotation(-20, 0.0, 0.0)
lv.control.Panel()
lv.control.Range('specular', range=(0,1), step=0.1, value=0.4)
lv.control.Checkbox(property='axis')
lv.control.ObjectList()
tris.control.List(["original", "smoothed", "smoothed2", "smoothed3",
"delta_n", "delta_ns",
"delta_n2", "delta_ns2",
"delta_n3", "delta_ns3"], property="colourby", value="orginal", command="redraw")
lv.control.show()
The next example is Ex6-Scattered-Data