stripy
smoothing operationsSRFPACK is a Fortran 77 software package that constructs a smooth interpolatory or approximating surface to data values associated with arbitrarily distributed points. It employs automatically selected tension factors to preserve shape properties of the data and avoid overshoot and undershoot associated with steep gradients.
Here we demonstrate how to access SRFPACK smoothing through the stripy
interface.
The next example is Ex6-Scattered-Data
In [ ]:
import stripy as stripy
xmin = 0.0
xmax = 10.0
ymin = 0.0
ymax = 10.0
extent = [xmin, xmax, ymin, ymax]
spacingX = 0.2
spacingY = 0.2
mesh = stripy.cartesian_meshes.elliptical_mesh(extent, spacingX, spacingY, refinement_levels=1)
print(mesh.npoints)
In [ ]:
import numpy as np
def analytic(xs, ys, k1, k2):
return np.cos(k1*xs) * np.sin(k2*ys)
def analytic_noisy(xs, ys, k1, k2, noise, short):
return np.cos(k1*xs) * np.sin(k2*ys) + \
short * (np.cos(k1*5.0*xs) * np.sin(k2*5.0*ys)) + \
noise * np.random.random(xs.shape)
# def analytic_ddlon(xs, ys, k1, k2):
# return -k1 * np.sin(k1*xs) * np.sin(k2*ys) / np.cos(ys)
# def analytic_ddlat(xs, ys, k1, k2):
# return k2 * np.cos(k1*xs) * np.cos(k2*ys)
analytic_sol = analytic(mesh.x, mesh.y, 0.1, 1.0)
analytic_sol_n = analytic_noisy(mesh.x, mesh.y, 0.1, 1.0, 0.2, 0.0)
In [ ]:
%matplotlib inline
import matplotlib.pyplot as plt
def axis_mesh_field(fig, ax, mesh, field, label):
ax.axis('off')
x0 = mesh.x
y0 = mesh.y
trip = ax.tripcolor(x0, y0, mesh.simplices, field, cmap=plt.cm.RdBu)
fig.colorbar(trip, ax=ax)
ax.set_title(str(label))
return
fig = plt.figure(figsize=(10, 8), facecolor="none")
ax = fig.add_subplot(111)
axis_mesh_field(fig, ax, mesh, analytic_sol-analytic_sol_n, "noisy solution")
The Triangulation.smoothing
method directly wraps the SRFPACK smoother that smooths a surface f described
by values on the mesh vertices to find a new surface f' (also described on the mesh vertices) by choosing nodal function values and gradients to minimize the linearized curvature of F subject to a bound on the deviation from the data values.
In [ ]:
help(mesh.smoothing)
In [ ]:
stripy_smoothed, dds = mesh.smoothing(analytic_sol_n, np.ones_like(analytic_sol_n), 10.0, 0.1, 0.01)
stripy_smoothed2, dds = mesh.smoothing(analytic_sol_n, np.ones_like(analytic_sol_n), 1.0, 0.1, 0.01)
stripy_smoothed3, dds = mesh.smoothing(analytic_sol_n, np.ones_like(analytic_sol_n), 50.0, 0.1, 0.01)
delta_n = analytic_sol_n - stripy_smoothed
delta_ns = analytic_sol - stripy_smoothed
delta_n2 = analytic_sol_n - stripy_smoothed2
delta_ns2 = analytic_sol - stripy_smoothed2
delta_n3 = analytic_sol_n - stripy_smoothed3
delta_ns3 = analytic_sol - stripy_smoothed3
In [ ]:
stripy_smoothed, dds
In [ ]:
fig, ax = plt.subplots(2,2, figsize=(12, 10), facecolor="none")
axis_mesh_field(fig, ax[0,0], mesh, analytic_sol_n, label="original")
axis_mesh_field(fig, ax[0,1], mesh, stripy_smoothed, label="smoothed1")
axis_mesh_field(fig, ax[1,0], mesh, stripy_smoothed2, label="smoothed2")
axis_mesh_field(fig, ax[1,1], mesh, stripy_smoothed3, label="smoothed3")
plt.show()
The next example is Ex6-Scattered-Data