In [1]:
import numpy as np
In [2]:
A = np.array([
[1., 1., 0.25],
[1., 1., 0.2],
[4., 5., 1.]
])
AR = np.array([
[1., 2.],
[0.5, 1.]
])
AM = np.array([
[1., 0.5],
[2., 1.]
])
AA = np.array([
[1., 1.],
[1., 1.]
])
In [3]:
def norm(X):
return np.sum(X, axis=1) / np.sum(X)
Let's find a wegith vector for our criterias.
In [4]:
W = norm(A)
W
Out[4]:
Now we can build a norms for our criterias.
In [5]:
X = np.vstack((norm(AR), norm(AM), norm(AA)))
X
Out[5]:
And scale them properly.
In [6]:
usefulness = np.dot(X.T, W)
usefulness
Out[6]:
So that we choose the first one.